Class groups of integral group rings
HTML articles powered by AMS MathViewer
- by I. Reiner and S. Ullom
- Trans. Amer. Math. Soc. 170 (1972), 1-30
- DOI: https://doi.org/10.1090/S0002-9947-1972-0304470-6
- PDF | Request permission
Abstract:
Let $\Lambda$ be an $R$-order in a semisimple finite dimensional $K$-algebra, where $K$ is an algebraic number field, and $R$ is the ring of algebraic integers of $K$. Denote by $C(\Lambda )$ the reduced class group of the category of locally free left $\Lambda$-lattices. Choose $\Lambda = ZG$, the integral group ring of a finite group $G$, and let $\Lambda ’$ be a maximal $Z$-order in $QG$ containing $\Lambda$. There is an epimorphism $C(\Lambda ) \to C(\Lambda ’)$, given by $M \to \Lambda ’{ \otimes _\Lambda }M$, for $M$ a locally free $\Lambda$-lattice. Let $D(\Lambda )$ be the kernel of this epimorphism; the groups $D(\Lambda ),C(\Lambda )$ and $C(\Lambda ’)$ are all finite. Our main theorem is that $D(ZG)$ is a $p$-group whenever $G$ is a $p$-group. This generalizes Fröhlich’s result for the case where $G$ is an abelian $p$-group. Our proof uses some facts about the center $F$ of $QG$, as well as information about reduced norms. We also calculate $D(ZG)$ explicitly for $G$ cyclic of order $2p$, dihedral of order $2p$, or the quaternion group. In these cases, the ring $ZG$ can be conveniently described by a pullback diagram.References
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- N. Bourbaki, Éléments de mathématique. 23. Première partie: Les structures fondamentales de l’analyse. Livre II: Algèbre. Chapitre 8: Modules et anneaux semi-simples, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1261, Hermann, Paris, 1958 (French). MR 0098114
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- Max Deuring, Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 41, Springer-Verlag, Berlin-New York, 1968 (German). Zweite, korrigierte auflage. MR 0228526 M. Eichler, Allgemeine Kongruenzklasseneinteilungen der Ideale einfachen Algebren über algebrais chen Zahlkörpern und ihre $L$-Reihen, J. Reine Angew. Math. 179 (1938), 227-251.
- Walter Feit, Characters of finite groups, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR 0219636
- Albrecht Frölich, Ideals in an extension field as modules over the algebraic integers in a finite number field, Math. Z. 74 (1960), 29–38. MR 0113877, DOI 10.1007/BF01180470
- A. Fröhlich, On the classgroup of integral grouprings of finite Abelian groups, Mathematika 16 (1969), 143–152. MR 260892, DOI 10.1112/S002557930000810X
- H. Jacobinski, Genera and decompositions of lattices over orders, Acta Math. 121 (1968), 1–29. MR 251063, DOI 10.1007/BF02391907
- Myrna Pike Lee, Integral representations of dihedral groups of order $2p$, Trans. Amer. Math. Soc. 110 (1964), 213–231. MR 156896, DOI 10.1090/S0002-9947-1964-0156896-7
- Irving Reiner, A survey of integral representation theory, Bull. Amer. Math. Soc. 76 (1970), 159–227. MR 254092, DOI 10.1090/S0002-9904-1970-12441-7
- Klaus W. Roggenkamp and Verena Huber-Dyson, Lattices over orders. I, Lecture Notes in Mathematics, Vol. 115, Springer-Verlag, Berlin-New York, 1970. MR 0283013
- Richard G. Swan, Induced representations and projective modules, Ann. of Math. (2) 71 (1960), 552–578. MR 138688, DOI 10.2307/1969944
- Richard G. Swan, The Grothendieck ring of a finite group, Topology 2 (1963), 85–110. MR 153722, DOI 10.1016/0040-9383(63)90025-9
- Richard G. Swan, $K$-theory of finite groups and orders, Lecture Notes in Mathematics, Vol. 149, Springer-Verlag, Berlin-New York, 1970. MR 0308195
- S. Ullom, A note on the classgroup of integral group rings of some cyclic groups, Mathematika 17 (1970), 79–81. MR 269755, DOI 10.1112/S0025579300002734 A. Fröhlich, The Picard group (to appear).
- I. Reiner and S. Ullom, A Mayer-Vietoris sequence for class groups, J. Algebra 31 (1974), 305–342. MR 349828, DOI 10.1016/0021-8693(74)90072-6 A. Fröhlich, I. Reiner and S. Ullom, Picard groups and class groups (to appear).
- Jacques Martinet, Modules sur l’algèbre du groupe quaternionien, Ann. Sci. École Norm. Sup. (4) 4 (1971), 399–408 (French). MR 291208
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 170 (1972), 1-30
- MSC: Primary 20C05
- DOI: https://doi.org/10.1090/S0002-9947-1972-0304470-6
- MathSciNet review: 0304470