Second-order time degenerate parabolic equations
HTML articles powered by AMS MathViewer
- by Margaret C. Waid
- Trans. Amer. Math. Soc. 170 (1972), 31-55
- DOI: https://doi.org/10.1090/S0002-9947-1972-0304860-1
- PDF | Request permission
Abstract:
We study the degenerate parabolic operator $Lu = \sum \nolimits _{i,j = 1}^n {{a^{ij}}{u_{{x_j}{x_j}}}} + \sum \nolimits _{i = 1}^n {{b^i}{u_{{x_i}}}} - c{u_t} + du$ where the coefficients of $L$ are bounded, real-valued functions defined on a domain $D = \Omega \times (0,T] \subset {R^{n + 1}}$. Classically, $c(x,t) \equiv 1$ or, equivalently, $c(x,t) \geq \eta > 0$ for all $(x,t) \in \bar D$. We assume only that $c$ is non-negative. We prove weak maximum principles and Harnack inequalities. Assume that ${a^{ij}}$ is constant, the coefficients of $L$ and $f$ and their derivatives with respect to time are uniformly Hölder continuous (exponent $\alpha$) in $\bar D,\bar D$ has sufficiently nice boundary, $c > 0$ on the normal boundary of $D$, $\psi \in {\bar C_{z + \alpha }}$, and $L\psi = f$ on $\partial B = \partial (\bar D \cap \{ t = 0\} )$. Then there exists a unique solution $u$ of the first initial-boundary value problem $Lu = f,u = \psi$ on $\bar B + (\partial B \times [0,T])$; and, furthermore, $u \in {\bar C_{2 + \alpha }}$. All results require proofs that differ substantially from the classical ones.References
- D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 607–694. MR 435594
- D. G. Aronson, Regularity propeties of flows through porous media, SIAM J. Appl. Math. 17 (1969), 461–467. MR 247303, DOI 10.1137/0117045
- D. G. Aronson and James Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal. 25 (1967), 81–122. MR 244638, DOI 10.1007/BF00281291 W. T. Ford, Elements of simulation of fluid flow in porous media, Texas Tech University Press, Lubbock, Tex., 1971.
- Wayne T. Ford, The first initial-boundary value problem for a nonuniform parabolic equation, J. Math. Anal. Appl. 40 (1972), 131–137. MR 320532, DOI 10.1016/0022-247X(72)90035-2
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
- C. Denson Hill, A sharp maximum principle for degenerate elliptic-parabolic equations, Indiana Univ. Math. J. 20 (1970/71), 213–229. MR 287175, DOI 10.1512/iumj.1970.20.20020
- J. J. Kohn and L. Nirenberg, Degenerate elliptic-parabolic equations of second order, Comm. Pure Appl. Math. 20 (1967), 797–872. MR 234118, DOI 10.1002/cpa.3160200410
- O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, Lineĭ nye i kvazilineĭ nye uravneniya parabolicheskogo tipa, Izdat. “Nauka”, Moscow, 1967 (Russian). MR 0241821
- O. A. Ladyženskaja and N. N. Ural′ceva, On the Hölder continuity of the solutions and the derivatives of linear and quasi-linear equations of elliptic and parabolic types, Trudy Mat. Inst. Steklov. 73 (1964), 172–220 (Russian). MR 0173855 E. E. Levi, Sulle equazioni lineari totalmente ellittiche alle derivate parziali, Rend. Circ. Mat. Palermo 24 (1907), 275-317.
- Jürgen Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101–134. MR 159139, DOI 10.1002/cpa.3160170106
- Olga Oleĭnik, Quasi-linear second-order parabolic equations with many independent variables, Seminari 1962/63 Anal. Alg. Geom. e Topol., Vol. 1, Ist. Naz. Alta Mat., Ediz. Cremonese, Rome, 1965, pp. 332–354. MR 0194763
- O. A. Oleĭnik and S. N. Kružkov, Quasi-linear parabolic second-order equations with several independent variables, Uspehi Mat. Nauk 16 (1961), no. 5 (101), 115–155 (Russian). MR 0141892
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR 0219861
- Neil S. Trudinger, Pointwise estimates and quasilinear parabolic equations, Comm. Pure Appl. Math. 21 (1968), 205–226. MR 226168, DOI 10.1002/cpa.3160210302 E. D. Williams, The numerical solution of degenerate parabolic equations, Doctoral Dissertation, Texas Tech University, Lubbock, Tex., 1971.
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 170 (1972), 31-55
- MSC: Primary 35K10
- DOI: https://doi.org/10.1090/S0002-9947-1972-0304860-1
- MathSciNet review: 0304860