On Knaster’s conjecture
HTML articles powered by AMS MathViewer
 by R. P. Jerrard PDF
 Trans. Amer. Math. Soc. 170 (1972), 385402 Request permission
Abstract:
Knaster’s conjecture is: given a continuous $g:{S^n} \to {E^m}$ and a set $\Delta$ of $n  m + 2$ distinct points $({q_1}, \ldots ,{q_{n  m + 2}})$ in ${S^n}$ there exists a rotation $r:{S^n} \to {S^n}$ such that \[ g(r({q_1})) = g(r({q_2})) = \cdots = g(r({q_{n  m + 2}})).\] We prove a stronger statement about a smaller class of functions. If $f:{S^n} \to {E^n}$ we write $f = ({f_1},{f_2}, \ldots ,{f_n})$ where ${f_i}:{S^n} \to {E^1}$, and put ${F_i} = ({f_1}, \ldots ,{f_i}):{S^n} \to {E^i}$ so that ${F_n} = f$. The level surface of ${F_i}$ in ${S^n}$ containing $x$ is ${l_i}(x) = \{ y \in {S^n}{F_i}(x) = {F_i}(y)\}$. Theorem. Given an $(n + 1)$frame $\Delta \subset {S^n}$ and a realanalytic function $f:{S^n} \to {E^n}$ such that each ${l_i}(x)$ is either a point or a topological $(n  i)$sphere, there exist at least ${2^{n  1}}$ distinct rotations $r:{S^n} \to {S^n}$ such that \[ {f_i}(r({q_1})) = \cdots = {f_i}(r({q_{n  i + 2}})),\quad i = 1,2, \ldots ,n,\] for each rotation. It follows that for $m = 1,2, \ldots ,n$, \[ {F_m}(r({q_1})) = {F_m}(r({q_2})) = \cdots = {F_m}(r({q_{n  m + 2}})),\] so that the functions ${F_m}:{S^n} \to {E^m}$ satisfy Knaster’s conjecture simultaneously. Given ${F_i}$, the definition of $f$ can be completed in many ways by choosing ${f_{i + 1}}, \cdots ,{f_n}$, each way giving rise to different rotations satisfying the Theorem. A suitable homotopy of $f$ which changes ${f_n}$ slightly will give locally a continuum of rotations $r$ each of which satisfies Knaster’s conjecture for ${F_{n  1}}$. In general there exists an $(n  m)$dimensional family of rotations satisfying Knaster’s conjecture for ${F_m}$.References

K. Borsuk, Drei Sätze über die $n$dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177.
 D. G. Bourgin, On some separation and mapping theorems, Comment. Math. Helv. 29 (1955), 199–214. MR 72469, DOI 10.1007/BF02564279
 D. G. Bourgin, Multiplicity of solutions in frame mappings, Illinois J. Math. 9 (1965), 169–177. MR 203723
 S. S. Cairns, Circumscribed cubes in euclidean $n$space, Bull. Amer. Math. Soc. 65 (1959), 327–328. MR 110102, DOI 10.1090/S000299041959103414
 P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press, Inc., Publishers, New York; SpringerVerlag, BerlinGöttingenHeidelberg, 1964. MR 0176478
 F. J. Dyson, Continuous functions defined on spheres, Ann. of Math. (2) 54 (1951), 534–536. MR 44620, DOI 10.2307/1969487
 E. E. Floyd, Realvalued mappings of spheres, Proc. Amer. Math. Soc. 6 (1955), 957–959. MR 73978, DOI 10.1090/S00029939195500739789
 Michael A. Geraghty, Applications of Smith index to some covering and frame theorems, Nederl. Akad. Wetensch. Proc. Ser. A 64 = Indag. Math. 23 (1961), 219–228. MR 0124044, DOI 10.1112/s0025579300008706
 Heinz Hopf, Eine Verallgemeinerung bekannter Abbildungs und Überdeckungssätze, Portugal. Math. 4 (1944), 129–139 (German). MR 11438
 R. P. Jerrard, Inscribed squares in plane curves, Trans. Amer. Math. Soc. 98 (1961), 234–241. MR 120604, DOI 10.1090/S00029947196101206043
 Shizuo Kakutani, A proof that there exists a circumscribing cube around any bounded closed convex set in $R^3$, Ann. of Math. (2) 43 (1942), 739–741. MR 7267, DOI 10.2307/1968964 B. Knaster, Problem 4, Colloq. Math. 1 (1947), 30.
 George R. Livesay, On a theorem of F. J. Dyson, Ann. of Math. (2) 59 (1954), 227–229. MR 59546, DOI 10.2307/1969689
 Hidehiko Yamabe and Zuiman Yujobô, On the continuous function defined on a sphere, Osaka Math. J. 2 (1950), 19–22. MR 37006
 ChungTao Yang, On theorems of BorsukUlam, KakutaniYamabeYujobô and Dyson. I, Ann. of Math. (2) 60 (1954), 262–282. MR 65910, DOI 10.2307/1969632
Additional Information
 © Copyright 1972 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 170 (1972), 385402
 MSC: Primary 55C20; Secondary 54H25
 DOI: https://doi.org/10.1090/S00029947197203091017
 MathSciNet review: 0309101