The separable closure of some commutative rings
HTML articles powered by AMS MathViewer
- by Andy R. Magid
- Trans. Amer. Math. Soc. 170 (1972), 109-124
- DOI: https://doi.org/10.1090/S0002-9947-1972-0311642-3
- PDF | Request permission
Abstract:
The separable closure of a commutative ring with an arbitrary number of idempotents is defined and its Galois theory studied. Projective separable algebras over the ring are shown to be determined by the ’Galois groupoid’ of the closure. The existence of the closure is demonstrated for certain rings.References
- . H. Bass, Lectures on topics in algebraic $K$-theory, Tata Institute of Fundamental Research, Bombay, 1967.
- Frank DeMeyer and Edward Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, Berlin-New York, 1971. MR 0280479
- Pierre Gabriel, Construction de préschémas quotient, Schémas en Groupes (Sém. Géométrie Algébrique, Inst. Hautes Études Sci., 1963/64) Inst. Hautes Études Sci., Paris, 1963, pp. Fasc. 2a, Exposé 5, 37 (French). MR 0257095
- G. J. Janusz, Separable algebras over commutative rings, Trans. Amer. Math. Soc. 122 (1966), 461–479. MR 210699, DOI 10.1090/S0002-9947-1966-0210699-5
- A. R. Magid, Galois groupoids, J. Algebra 18 (1971), 89–102. MR 272775, DOI 10.1016/0021-8693(71)90128-1
- Andy R. Magid, Locally Galois algebras, Pacific J. Math. 33 (1970), 707–724. MR 263805
- A. R. Magid, Pierce’s representation and separable algebras, Illinois J. Math. 15 (1971), 114–121. MR 272832
- O. E. Villamayor and D. Zelinsky, Galois theory for rings with finitely many idempotents, Nagoya Math. J. 27 (1966), 721–731. MR 206055
- O. E. Villamayor and D. Zelinsky, Galois theory with infinitely many idempotents, Nagoya Math. J. 35 (1969), 83–98. MR 244238
- Shizuo Endo and Yutaka Watanabe, On separable algebras over a commutative ring, Osaka Math. J. 4 (1967), 233–242. MR 227211
- R. S. Pierce, Modules over commutative regular rings, Memoirs of the American Mathematical Society, No. 70, American Mathematical Society, Providence, R.I., 1967. MR 0217056
- Albert Wilansky, Topology for analysis, Ginn (A Xerox company), Waltham, Mass.-Toronto, Ont.-London, 1970. MR 0451181
- Frank DeMeyer, Separable polynomials over a commutative ring, Rocky Mountain J. Math. 2 (1972), no. 2, 299–310. MR 294321, DOI 10.1216/RMJ-1972-2-2-299
- Richard F. Arens and Irving Kaplansky, Topological representation of algebras, Trans. Amer. Math. Soc. 63 (1948), 457–481. MR 25453, DOI 10.1090/S0002-9947-1948-0025453-6
- S. U. Chase, D. K. Harrison, and Alex Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 15–33. MR 195922
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 170 (1972), 109-124
- MSC: Primary 13B99
- DOI: https://doi.org/10.1090/S0002-9947-1972-0311642-3
- MathSciNet review: 0311642