## Solid $k$-varieties and Henselian fields

HTML articles powered by AMS MathViewer

- by Gustave Efroymson PDF
- Trans. Amer. Math. Soc.
**170**(1972), 187-195 Request permission

## Abstract:

Let $k$ be a field with a nontrivial absolute value. Define property $( \ast )$ for $k$: Given any polynomial $f(x)$ in $k[x]$ with a simple root $\alpha$ in $k$; then if $g(x)$ is a polynomial near enough to $f(x),g(x)$ has a simple root $\beta$ near $\alpha$. A characterization of fields with property $( \ast )$ is given. If $Y$ is an affine $k$-variety, $Y \subset {\bar k^{(n)}}$, define ${Y_k} = Y \cap {k^{(n)}}$. Define $Y$ to be*solid*if $I(Y) = I({Y_k})$ in $k[{x_1}, \cdots ,{x_n}]$. If $\pi :Y \to {\bar k^d}$ is a projection induced by Noether normalization, and if $k$ has property $( \ast )$, then $Y$ is a solid $k$-variety if and only if $\pi ({Y_k})$ contains a sphere in ${k^d}$. Using this characterization of solid $k$-varieties and Bertiniâs theorem, a dimension theorem is proven.

## References

- James Ax,
*Solving diophantine problems modulo every prime*, Ann. of Math. (2)**85**(1967), 161â183. MR**209224**, DOI 10.2307/1970438 - N. Bourbaki,
*ĂlĂ©ments de mathĂ©matique. Fasc. XXX. AlgĂšbre commutative. Chapitre 5: Entiers. Chapitre 6: Valuations*, ActualitĂ©s Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1308, Hermann, Paris, 1964 (French). MR**0194450**
D. Dubois and G. Efroymson, - Moshe Jarden,
*Rational points on algebraic varieties over large number fields*, Bull. Amer. Math. Soc.**75**(1969), 603â606. MR**240102**, DOI 10.1090/S0002-9904-1969-12257-3 - Serge Lang,
*Algebraic numbers*, Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto-London, 1964. MR**0160763** - Masayoshi Nagata,
*Local rings*, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR**0155856** - Masayoshi Nagata,
*On the theory of Henselian rings*, Nagoya Math. J.**5**(1953), 45â57. MR**51821** - Oscar Zariski and Pierre Samuel,
*Commutative algebra, Volume I*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR**0090581**

*A dimension theorem for real primes*(submitted). A. Grothendieck with the collaboration of J. DieudonnĂ©,

*ElĂ©ments de gĂ©omĂ©trie algĂ©brique*, Inst. Hautes Ătudes Sci., Bures sur Yvette, Chapter 5 (to appear). A. Grothendieck,

*Local properties of morphisms*, A course given at Harvard University, Cambridge, Mass., 1963.

## Additional Information

- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**170**(1972), 187-195 - MSC: Primary 14G20; Secondary 13J15
- DOI: https://doi.org/10.1090/S0002-9947-1972-0318159-0
- MathSciNet review: 0318159