## Extreme limits of compacta valued functions

HTML articles powered by AMS MathViewer

- by T. F. Bridgland PDF
- Trans. Amer. Math. Soc.
**170**(1972), 149-163 Request permission

## Abstract:

Let $X$ denote a topological space and $\Omega (X)$ the space of all nonvoid closed subsets of $X$. Recent developments in analysis, especially in control theory, have rested upon the properties of the space $\Omega (X)$ where $X$ is assumed to be metric but not necessarily compact and with $\Omega (X)$ topologized by the Hausdorff metric. For a continuation of these developments, it is essential that definitions of extreme limits of sequences in $\Omega (X)$ be formulated in such a way that the induced limit is topologized by the Hausdorff metric. It is the purpose of this paper to present the formulation of such a definition and to examine some of the ramifications thereof. In particular, we give several theorems which embody “estimates of Fatou” for integrals of set valued functions.## References

- K. Kuratowski,
*Topology. Vol. I*, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR**0217751**
—, - T. F. Bridgland Jr.,
*Contributions to the theory of generalized differential equations. I, II*, Math. Systems Theory**3**(1969), 17–50; ibid. 3 (1969), 156–165. MR**249777**, DOI 10.1007/BF01695624 - T. F. Bridgland Jr.,
*Trajectory integrals of set valued functions*, Pacific J. Math.**33**(1970), 43–68. MR**262454** - Robert J. Aumann,
*Integrals of set-valued functions*, J. Math. Anal. Appl.**12**(1965), 1–12. MR**185073**, DOI 10.1016/0022-247X(65)90049-1 - J. Dieudonné,
*Foundations of modern analysis*, Pure and Applied Mathematics, Vol. X, Academic Press, New York-London, 1960. MR**0120319** - Nelson Dunford and Jacob T. Schwartz,
*Linear Operators. I. General Theory*, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR**0117523** - Frederick A. Valentine,
*Convex sets*, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Toronto-London, 1964. MR**0170264** - Charles Castaing,
*Sur les équations différentielles multivoques*, C. R. Acad. Sci. Paris Sér. A-B**263**(1966), A63–A66 (French). MR**200506**

*Topology*. Vol. 2, Academic Press, New York; PWN, Warsaw, 1968. MR

**41**#4467. C. Berge,

*Topological spaces*, Macmillan, New York, 1963. T. F. Bridgland, Jr.,

*Contributions to the theory of generalized differential equations*. I, Math. Systems Theory

**3**(1969), 17-50. MR

**40**#3018.

## Additional Information

- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**170**(1972), 149-163 - MSC: Primary 54C60; Secondary 28A45
- DOI: https://doi.org/10.1090/S0002-9947-1972-0362209-2
- MathSciNet review: 0362209