Analytic continuation of Eisenstein series
HTML articles powered by AMS MathViewer
- by Joseph Lewittes
- Trans. Amer. Math. Soc. 171 (1972), 469-490
- DOI: https://doi.org/10.1090/S0002-9947-1972-0306148-1
- PDF | Request permission
Abstract:
The classical Eisenstein series are essentially of the form $\Sigma ’_{m, n} \left ( (m + r_1) z + n + r_2\right )^{-s}$, $m$, $n$ ranging over integer values, $\operatorname {Im} z > 0$, $r_1$, $r_2$ rational and $s$ an integer $> 2$. In this paper we show that if $s$ is taken to be complex the series, with ${r_1},{r_2}$ any real numbers, defines an analytic function of $(z,s)$ for $\operatorname {Im} z > 0$, $\operatorname {Re} s > 2$. Furthermore this function has an analytic continuation over the entire $s$ plane, exhibted explicitly by a convergent Fourier expansion. A formula for the transformation of the function when $z$ is subjected to a modular transformation is obtained and the special case of $s$ an integer is studied in detail.References
- E. Hecke, Theorie der Eisensteinschen Reihe hoherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Sem. Univ. Hamburg 5 (1927), 199-224.
- Joseph Lewittes, Analytic continuation of the series $\sum \,(m+nz)^{-s}$, Trans. Amer. Math. Soc. 159 (1971), 505–509. MR 279286, DOI 10.1090/S0002-9947-1971-0279286-9
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 171 (1972), 469-490
- MSC: Primary 10K20
- DOI: https://doi.org/10.1090/S0002-9947-1972-0306148-1
- MathSciNet review: 0306148