The finiteness of $I$ when $\textit {R}[\textit {X}]/\textit {I}$ is flat
HTML articles powered by AMS MathViewer
- by Jack Ohm and David E. Rush
- Trans. Amer. Math. Soc. 171 (1972), 377-408
- DOI: https://doi.org/10.1090/S0002-9947-1972-0306176-6
- PDF | Request permission
Abstract:
Let $R$ be a commutative ring with identity, let $X$ be an indeterminate, and let $I$ be an ideal of the polynomial ring $R[X]$. Let $\min I$ denote the set of elements of $I$ of minimal degree and assume henceforth that $\min I$ contains a regular element. Then $R[X]/I$ is a flat $R$-module implies $I$ is a finitely generated ideal. Under the additional hypothesis that $R$ is quasi-local integrally closed, the stronger conclusion that $I$ is principal holds. (An example shows that the first statement is no longer valid when $\min I$ does not contain a regular element.) Let $c(I)$ denote the content ideal of $I$, i.e. $c(I)$ is the ideal of $R$ generated by the coefficients of the elements of $I$. A corollary to the above theorem asserts that $R[X]/I$ is a flat $R$-module if and only if $I$ is an invertible ideal of $R[X]$ and $c(I) = R$. Moreover, if $R$ is quasi-local integrally closed, then the following are equivalent: (i) $R[X]/I$ is a flat $R$-module; (ii) $R[X]/I$ is a torsion free $R$-module and $c(I) = R$; (iii) $I$ is principal and $c(I) = R$. Let $\xi$ denote the equivalence class of $X$ in $R[X]/I$, and let $\langle 1,\xi , \cdots ,{\xi ^t}\rangle$ denote the $R$-module generated by $1,\xi , \cdots ,{\xi ^t}$. The following statements are also equivalent: (i) $\langle 1,\xi , \cdots ,{\xi ^t}\rangle$ is flat for all $t \geqslant 0$; (ii) $\langle 1,\xi , \cdots ,{\xi ^t}\rangle$ is flat for some $t \geqslant 0$ for which $1,\xi , \cdots ,{\xi ^t}$ are linearly dependent over $R$; (iii) $I = ({f_1}, \cdots ,{f_n}),{f_i} \in \min I$, and $c(I) = R$; (iv) $c(\min I) = R$. Moreover, if $R$ is integrally closed, these are equivalent to $R[X]/I$ being a flat $R$-module. A certain symmetry enters in when $\xi$ is regular in $R[\xi ]$, and in this case (i)-(iv) are also equivalent to the assertion that $R[\xi ]$ and $R[1/\xi ]$ are flat $R$-modules.References
- Tomoharu Akiba, Remarks on generalized rings of quotients, Proc. Japan Acad. 40 (1964), 801–806. MR 180573 N. Bourbaki, Eléments de mathématique. XXVII et XXX. Algèbre commutative. Chaps. 1-6, Actualités Sci. Indust., nos. 1290, 1293, 1308, Hermann, Paris, 1961, 1964. MR 30 #2027; MR 33 #2660; MR 36 #146 [(a) Chaps. 1 and 2, (b) Chaps. 3 and 4, (c) Chaps. 5 and 6].
- Luther Claborn, Every abelian group is a class group, Pacific J. Math. 18 (1966), 219–222. MR 195889, DOI 10.2140/pjm.1966.18.219
- S. H. Cox Jr. and R. L. Pendleton, Rings for which certain flat modules are projective, Trans. Amer. Math. Soc. 150 (1970), 139–156. MR 262296, DOI 10.1090/S0002-9947-1970-0262296-4
- Shizuo Endo, On flat modules over commutative rings, J. Math. Soc. Japan 14 (1962), 284–291. MR 179226, DOI 10.2969/jmsj/01430284
- Shizuo Endo, On semi-hereditary rings, J. Math. Soc. Japan 13 (1961), 109–119. MR 138664, DOI 10.2969/jmsj/01320109
- Shizuo Endo, Projective modules over polynomial rings, J. Math. Soc. Japan 15 (1963), 339–352. MR 155875, DOI 10.2969/jmsj/01530339
- Dennis Estes and Jack Ohm, Stable range in commutative rings, J. Algebra 7 (1967), 343–362. MR 217052, DOI 10.1016/0021-8693(67)90075-0
- Robert W. Gilmer, Multiplicative ideal theory, Queen’s Papers in Pure and Applied Mathematics, No. 12, Queen’s University, Kingston, Ont., 1968. MR 0229624
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
- Irving Kaplansky, Projective modules, Ann. of Math. (2) 68 (1958), 372–377. MR 0100017, DOI 10.2307/1970252
- Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234
- Wolfgang Krull, Beiträge zur Arithmetik kommutativer Integritätsbereiche, Math. Z. 41 (1936), no. 1, 545–577 (German). MR 1545640, DOI 10.1007/BF01180441
- Masayoshi Nagata, Finitely generated rings over a valuation ring, J. Math. Kyoto Univ. 5 (1966), 163–169. MR 193088, DOI 10.1215/kjm/1250524533
- Masayoshi Nagata, Flatness of an extension of a commutative ring, J. Math. Kyoto Univ. 9 (1969), 439–448. MR 255530, DOI 10.1215/kjm/1250523905
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- D. G. Northcott, A generalization of a theorem on the content of polynomials, Proc. Cambridge Philos. Soc. 55 (1959), 282–288. MR 110732, DOI 10.1017/s030500410003406x
- Jack Ohm and David E. Rush, Content modules and algebras, Math. Scand. 31 (1972), 49–68. MR 344289, DOI 10.7146/math.scand.a-11411
- Fred Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794–799. MR 181653, DOI 10.1090/S0002-9939-1965-0181653-1
- Richard G. Swan, The number of generators of a module, Math. Z. 102 (1967), 318–322. MR 218347, DOI 10.1007/BF01110912
- Wolmer V. Vasconcelos, On finitely generated flat modules, Trans. Amer. Math. Soc. 138 (1969), 505–512. MR 238839, DOI 10.1090/S0002-9947-1969-0238839-5
- Wolmer V. Vasconcelos, On projective modules of finite rank, Proc. Amer. Math. Soc. 22 (1969), 430–433. MR 242807, DOI 10.1090/S0002-9939-1969-0242807-2
- Wolmer V. Vasconcelos, Simple flat extensions, J. Algebra 16 (1970), 105–107. MR 265342, DOI 10.1016/0021-8693(70)90043-8 O. Zariski and P. Samuel, Commutative algebra. Vols. 1, 2, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1958, 1960. MR 19, 833; MR 22 #11006 [(a) Vol. 1 (1958), (b) Vol. 2 (1960)].
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 171 (1972), 377-408
- MSC: Primary 13C05
- DOI: https://doi.org/10.1090/S0002-9947-1972-0306176-6
- MathSciNet review: 0306176