Applications of bundle map theory
HTML articles powered by AMS MathViewer
- by Daniel Henry Gottlieb
- Trans. Amer. Math. Soc. 171 (1972), 23-50
- DOI: https://doi.org/10.1090/S0002-9947-1972-0309111-X
- PDF | Request permission
Abstract:
This paper observes that the space of principal bundle maps into the universal bundle is contractible. This fact is added to I. M. James’ Bundle map theory which is slightly generalized here. Then applications yield new results about actions on manifolds, the evaluation map, evaluation subgroups of classifying spaces of topological groups, vector bundle injections, the Wang exact sequence, and $H$-spaces.References
- Guy Allaud, On the classification of fiber spaces, Math. Z. 92 (1966), 110–125. MR 189035, DOI 10.1007/BF01312430
- Armand Borel, Topics in the homology theory of fibre bundles, Lecture Notes in Mathematics, No. 36, Springer-Verlag, Berlin-New York, 1967. Lectures given at the University of Chicago, 1954; Notes by Edward Halpern. MR 0221507, DOI 10.1007/BFb0096867
- Robert F. Brown, On the Lefschetz number and the Euler class, Trans. Amer. Math. Soc. 118 (1965), 174–179. MR 173268, DOI 10.1090/S0002-9947-1965-0173268-0
- Albrecht Dold and René Thom, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. (2) 67 (1958), 239–281 (German). MR 97062, DOI 10.2307/1970005
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- Edward Fadell, Generalized normal bundles for locally-flat imbeddings, Trans. Amer. Math. Soc. 114 (1965), 488–513. MR 179795, DOI 10.1090/S0002-9947-1965-0179795-4
- Daniel H. Gottlieb, On fibre spaces and the evaluation map, Ann. of Math. (2) 87 (1968), 42–55. MR 221508, DOI 10.2307/1970593
- Daniel Henry Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729–756. MR 275424, DOI 10.2307/2373349
- Daniel H. Gottlieb, The evaluation map and homology, Michigan Math. J. 19 (1972), 289–297. MR 343261
- I. M. James, The space of bundle maps, Topology 2 (1963), 45–59. MR 198472, DOI 10.1016/0040-9383(63)90021-1
- John Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430–436. MR 77932, DOI 10.2307/1970012 —, Lectures on characteristic classes, Princeton University, Princeton, N. J., 1957 (mimeographed).
- Anthony Phillips, Submersions of open manifolds, Topology 6 (1967), 171–206. MR 208611, DOI 10.1016/0040-9383(67)90034-1
- E. Spanier, Infinite symmetric products, function spaces, and duality, Ann. of Math. (2) 69 (1959), 142–198[ erratum, 733. MR 105106, DOI 10.2307/1970099
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258, DOI 10.1515/9781400883875
- N. E. Steenrod, Milgram’s classifying space of a topological group, Topology 7 (1968), 349–368. MR 233353, DOI 10.1016/0040-9383(68)90012-8
- T. E. Stewart, Lifting group actions in fibre bundles, Ann. of Math. (2) 74 (1961), 192–198. MR 126502, DOI 10.2307/1970310
- R. Thom, L’homologie des espaces fonctionnels, Colloque de topologie algébrique, Louvain, 1956, Georges Thone, Liège; Masson & Cie, Paris, 1957, pp. 29–39 (French). MR 0089408
- Stephen Weingram, On the incompressibility of certain maps, Ann. of Math. (2) 93 (1971), 476–485. MR 301735, DOI 10.2307/1970885
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 171 (1972), 23-50
- MSC: Primary 55F10
- DOI: https://doi.org/10.1090/S0002-9947-1972-0309111-X
- MathSciNet review: 0309111