Approximation on disks
HTML articles powered by AMS MathViewer
- by Kenneth John Preskenis
- Trans. Amer. Math. Soc. 171 (1972), 445-467
- DOI: https://doi.org/10.1090/S0002-9947-1972-0312123-3
- PDF | Request permission
Abstract:
Let $D$ be a closed disk in the complex plane, $f$ a complex valued continuous function on $D$ and ${R_f}(D) =$ the uniform closure on $D$ of rational functions in $z$ and $f$ which are finite. Among other results we obtain the following. Theorem. If $f$ is of class ${C^1}$ in a neighborhood of $D$ and $|{f_{\bar z}}| > |{f_z}|$ everywhere (i.e., $f$ is an orientation reversing immersion of $D$ in the plane), then ${R_f}(D) = C(D)$. Theorem. Let $f$ be a polynomial in $z$ and $\bar z$. If for each a in $D,f - \Sigma {(j!)^{ - 1}}{D^j}f(a){(z - a)^j} = {(\bar z - \bar a)^k}g$ with $|{g_{\bar z}}| > |{g_z}|$ at he zeros of $g$ in $D$ where $Df = {f_z}$, then ${R_f}(D) = C(D)$. Corollary. Let $f$ be a polynomial in $z$ and $\bar z$ and let $|{f_{z\bar z}}(0)| < |{f_{\bar z \bar z}}(0)|/2$. Then there exists an $r > 0$ such that, for $D = (|z| \leqslant r),{R_f}(D) = C(D)$. The proofs of the theorems use measures and the conditions involved in the theorems are independent of each other. Concerning the corollary, results of E. Bishop and G. Stolzenberg show that ${f_{\bar z}}(0) = 0$ and $|{f_{\bar z \bar z}}(0)| < |{f_{z\bar z}}(0)|$, then there exists no $r$ such that ${R_f}(D) = C(D)$ where $D = (|z| \leqslant r)$. Let $F = ({f_1}, \cdots ,{f_n})$ be a map on $B$ = unit polydisk in ${{\mathbf {C}}^n}$ with values in ${{\mathbf {C}}^n},{P_F}$ = uniform closure on $B$ of polynomials in ${z_1}, \cdots {z_n},{f_1}, \cdots ,{f_n}$. Theorem. If $F$ is of class ${C^1}$ in a neighborhood of $B,{F_{\bar z}}$ is invertible and if for each $a = ({a_1}, \cdots ,{a_n})$ in $B$, there exist complex constants $\{ {c_j}\} ,\{ {d_{ij}}\} ,i,j = 1, \cdots ,n$, such that $\Sigma {c_j}({z_j} - {a_j})({f_j}(z) - {f_j}(a)) + \Sigma {d_{ij}}({z_i} - {a_i})({z_j} - {a_j})$ has positive real part for all $z \ne a$, then $\{ (\zeta ,F(\zeta )):\zeta \in B\}$ is a polynomially convex set. Corollary. If $F = (f,g)$ where $f(z,w) = \bar z + cz\bar z + d{\bar z^2} + q\bar zw,g(z,w) = \bar w + sw\bar w + t{\bar w^2} + p\bar wz$ and the coefficients satisfy $|\bar c + d| + |d| + |q| < 1$ and $|\bar s + t| + |t| + |p| < 1$, then ${P_F} = C(B)$. Corollary. If $F(z) = \bar z + R(z)$ where $R = ({R_1}, \cdots ,{R_n})$ is of class ${C^2}$ and satisfies the Lipschitz condition $|R(\zeta ) - R(\eta )| \leqslant k|\zeta - \eta |$ with $k < 1$, then ${P_F} = C(B)$. This last corollary is a result of Hörmander and Wermer. The proof of the theorem uses methods from several complex variables.References
- Errett Bishop, A minimal boundary for function algebras, Pacific J. Math. 9 (1959), 629–642. MR 109305, DOI 10.2140/pjm.1959.9.629
- Errett Bishop, Boundary measures of analytic differentials, Duke Math. J. 27 (1960), 331–340. MR 118852
- Andrew Browder, Introduction to function algebras, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0246125
- Louis de Branges, The Stone-Weierstrass theorem, Proc. Amer. Math. Soc. 10 (1959), 822–824. MR 113131, DOI 10.1090/S0002-9939-1959-0113131-7
- Michael Freeman, Some conditions for uniform approximation on a manifold, Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965) Scott-Foresman, Chicago, Ill., 1966, pp. 42–60. MR 0193538
- Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
- Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0203075
- L. Hörmander and J. Wermer, Uniform approximation on compact sets in $C^{n}$, Math. Scand. 23 (1968), 5–21 (1969). MR 254275, DOI 10.7146/math.scand.a-10893
- J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds. I, Ann. of Math. (2) 78 (1963), 112–148. MR 153030, DOI 10.2307/1970506
- M. Krein and D. Milman, On extreme points of regular convex sets, Studia Math. 9 (1940), 133–138 (English, with Ukrainian summary). MR 4990, DOI 10.4064/sm-9-1-133-138 S. N. Mergelian, Uniform approximations to functions of a complex variable, Uspehi Mat. Nauk 5 (1952), no. 2 (48), 31-122; English transl., Amer. Math. Soc. Transl. (1) 3 (1962), 294-391. MR 14, 547.
- Ricardo Nirenberg and R. O. Wells Jr., Holomorphic approximation on real submanifolds of a complex manifold, Bull. Amer. Math. Soc. 73 (1967), 378–381. MR 209850, DOI 10.1090/S0002-9904-1967-11760-9 K. Oka, Domaines convexes pat rapport aux fonctions rationelles, J. Sci. Hiroshima Univ. 6 (1936), 245-255. K. Preskenis, On a theorem of S. N. Mergelyan, Master’s Thesis, Brown University, Providence, R. I., 1967.
- Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210528
- Gabriel Stolzenberg, Polynomially and rationally convex sets, Acta Math. 109 (1963), 259–289. MR 146407, DOI 10.1007/BF02391815
- F. A. Valentine, A Lipschitz condition preserving extension for a vector function, Amer. J. Math. 67 (1945), 83–93. MR 11702, DOI 10.2307/2371917
- J. Wermer, Approximation on a disk, Math. Ann. 155 (1964), 331–333. MR 165386, DOI 10.1007/BF01354865
- J. Wermer, Polynomially convex disks, Math. Ann. 158 (1965), 6–10. MR 174968, DOI 10.1007/BF01370392
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 171 (1972), 445-467
- MSC: Primary 41A20; Secondary 30A82
- DOI: https://doi.org/10.1090/S0002-9947-1972-0312123-3
- MathSciNet review: 0312123