RADIAL LIMIT SETS ON THE TORUS

BY

LAURENCE D. HOFFMANN(1)

ABSTRACT. Let U^N denote the unit polydisc and T^N the unit torus in the space of N complex variables. A subset A of T^N is called an (RL)-set (radial limit set) if to each positive continuous function ρ on T^N, there corresponds a function f in $H^\infty(U^N)$ such that the radial limit $|f|^*$ of the absolute value of f equals ρ, a.e. on T^N and everywhere on A. If $N > 1$, the question of characterizing (RL)-sets is open, but two positive results are obtained. In particular, it is shown that T^N contains an (RL)-set which is homeomorphic to a cartesian product $K \times T^{N-1}$, where K is a Cantor set. Also, certain countable unions of "parallel" copies of T^{N-1} are shown to be (RL)-sets in T^N. In one variable, every subset of T is an (RL)-set; in fact, there is always a zero-free function f in $H^\infty(U)$ with the required properties. It is shown, however, that there exist a circle $A \subset T^2$ and a positive continuous function ρ on T^2 to which correspond no zero-free f in $H^\infty(U^2)$ with $|f|^* = \rho$ a.e. on T^2 and everywhere on A.

1. Introduction. To each bounded, nonnegative function ρ on the unit circle T with $\log \rho \in L^1(T)$, there corresponds a bounded holomorphic function f on the unit disc U for which the radial limit $|f|^*$ of the absolute value of f equals ρ a.e. on T [3, p. 54]. It is known that this result does not generalize to the unit polydisc U^N in the space of N complex variables. However, one positive result due to Rudin [3, p. 55] asserts that if ρ is positive, bounded and lower semicontinuous on the unit torus T^N, there exists a function f in $H^\infty(U^N)$ with $|f|^* = \rho$ a.e. on T^N. In this paper, a modification of Rudin's construction will be used to obtain more precise information about the sets on which the equality $|f|^* = \rho$ is satisfied. In particular, the following related class of sets will be considered.

Definition. A subset A of T^N is called an (RL)-set (radial limit set) if to each positive continuous function ρ on T^N, there corresponds a function f in $H^\infty(U^N)$ with $|f|^* = \rho$ a.e. on T^N and everywhere on A.

In one variable, every subset of T is an (RL)-set. Indeed, if f is the outer function

(1) Parts of this paper appear in the author's dissertation written under the supervision of Professor Walter Rudin at the University of Wisconsin.
the continuity of ρ implies that $|f|^2(w) = \rho(w)$ for all $w \in T$. In several variables the question of characterizing (RL)-sets is open. However, in §2 of this paper, two types of (RL)-sets will be identified. In §3, some differences between one and several variables are discussed regarding the possibility of choosing a zero-free function f in the definition of (RL)-sets.

2. Construction of radial limit sets. The purpose of this section is to prove the following theorems which identify two types of (RL)-sets.

Theorem 1. Let $a = (a_1, \ldots, a_N)$ be a point in Z^N with $a_j > 0$ for $1 \leq j \leq N$, and $\{p_k\}$ a sequence of complex numbers with $|p_k| = 1$.

If $A_k = \{w \in T^N: wa = p_k\}$, for $k = 1, 2, \ldots$, then $A = \bigcup A_k$ is an (RL)-set in T^N.

(As usual, Z^N denotes the space of lattice points $a = (a_1, \ldots, a_N)$ where each a_j is an integer. If $w = (w_1, \ldots, w_N)$ is in T^N, wa stands for the monomial $w_1^{a_1} \ldots w_N^{a_N}$.)

Theorem 2. Suppose K is the usual "middle-third" Cantor set on $[0, 1]$, $a^2z^2 = \varphi(K)$ where

$$\varphi(t) = -\exp(2\pi i t), \quad (0 \leq t \leq 1).$$

If $A = \{w \in T^N: w_1 w_2 \ldots w_N \in S\}$, then A is an (RL)-set in T^N.

In Theorem 1, each set A_k consists of a finite number of "parallel" $(N - 1)$-dimensional tori. Hence, the theorem asserts that any countable union of copies of T^{N-1} which are parallel to $\{w \in T^N: w^a = 1\}$ is an (RL)-set in T^N. Theorem 2 says that T^N contains an (RL)-set which is topologically the cartesian product of a Cantor set and an $(N - 1)$-dimensional torus.

The first lemma is essentially Rudin’s "modification theorem" [3, Theorem 2.4.2] upon which the construction of (RL)-sets will be based. Since the conclusion of the lemma is somewhat more detailed than Rudin’s original version, a proof will be sketched.

As in [3, Chapter 2], $RP(T^N)$ will be the class of all complex Borel measures μ on T^N whose Poisson integral $P[d\mu]$ is the real part of a holomorphic function in U^N. RP-measures are characterized by the vanishing of their Fourier coefficients outside the positive and negative cones of Z^N.

If Q is a trigonometric polynomial on T^N, $\deg(Q)$ will denote the smallest positive integer d such that the Fourier coefficient $\hat{Q}(a)$ vanishes whenever $a = (a_1, \ldots, a_N) \in Z^N$ with $|a_j| > d$ for some j.
Lemma 1. Suppose $\beta \in \mathbb{T}^N$ and $s \in \mathbb{Z}^N$ with $s_j > 0$ for $1 \leq j \leq N$. Let $E = \{ w \in \mathbb{T}^N : w^s = 1 \}$, and $F = \beta E = \{ (\beta_1 w_1, \ldots, \beta_N w_N) : w \in E \}$. Let ν denote the Haar measure for the compact topological group E, and let μ be the translation of ν to the coset F; i.e., $\mu(\Lambda) = \nu(\beta \Lambda)$. If Q is a nonnegative trigonometric polynomial on \mathbb{T}^N with $\deg(Q) < s_j$ for $1 \leq j \leq N$, then

(a) $Q - Qd\mu \in \mathcal{R}(\mathbb{T}^N)$,
(b) $\hat{Q}(0) = (Qd\mu)_{\gamma}(0)$, and
(c) $\|Qd\mu\| = \|Q\|_1$.

Proof. For $a \in \mathbb{Z}^N$, the Fourier coefficients of μ and ν are related by

$$\hat{\mu}(a) = \overline{\beta}^a \hat{\nu}(a).$$

The function \overline{w}^a is a character on E and is identically 1 on E if and only if $a = ks$ for some integer k. Since ν is the Haar measure for E, it follows from (2) that

$$\hat{\mu}(a) = \begin{cases} \overline{\beta}^a & \text{if } a = ks \text{ for some } k \in \mathbb{Z}, \\ 0 & \text{otherwise.} \end{cases}$$

Let $Y_N = \mathbb{Z}^N_+ \cup (-\mathbb{Z}^N_+)$ where \mathbb{Z}^N_+ is the positive cone of all $a \in \mathbb{Z}^N$ with $a_j > 0$ for $1 \leq j \leq N$. If Q is a nonnegative trigonometric polynomial on \mathbb{T}^N, $\hat{Q}(a) = 0$ except for a in some finite set $X \subset \mathbb{Z}^N$. Thus

$$0 \not\in X + ks \subset Y_N, \quad \text{for } k = \pm 1, \pm 2, \ldots,$$

whenever $s_j > \deg(Q)$ for $1 \leq j \leq N$.

It follows from (3) that

$$\hat{Q}(a) = \sum_{n \in X} \hat{\mu}(n) \hat{\beta}(a - n) = \sum_{k = -\infty}^{\infty} \hat{\beta}(a - ks) \hat{\beta}^{ks}.$$

If $a \not\in Y_N$ and $k \neq 0$, (4) implies $a - ks \not\in X$ so that $\hat{Q}(a - ks) = 0$. Hence, by (5),

$$\hat{Q}(a) = \hat{Q}(a)$$

for all $a \not\in Y_N$, which says that $Q - Qd\mu$ is in $\mathcal{R}(\mathbb{T}^N)$.

Finally, it follows from (4) and (5) that

$$\hat{Q}(0) = \hat{Q}(0),$$

while $Q \geq 0$ implies $\|Qd\mu\| = (Qd\mu)_{\gamma}(0)$ and $\hat{Q}(0) = \|Q\|_1$. Hence, by (6), $\|Qd\mu\| = \|Q\|_1$, and the proof is complete.

Lemma 2. Let β, s, and μ be defined as in Lemma 1. If $r = (r_1, \ldots, r_N)$ with $0 < r_j < 1$, and $w = (w_1, \ldots, w_N) \in \mathbb{T}^N$, then the Poisson integral of μ is given by

$$P[d\mu](rw) = \mathcal{P}((rw, \overline{\beta})^s),$$

where \mathcal{P} is the Poisson kernel in one variable,

$$\mathcal{P}(\zeta) = \Re \left[\frac{1 + \zeta}{1 - \zeta} \right] \quad (\zeta \in \mathcal{U}),$$
Proof. The familiar series expansion \([3, \text{p. 17}]\) for the Poisson kernel is combined with (3) to give
\[
P[\mu](rw) = \sum_{k=-\infty}^{\infty} \beta^k s^k r^1 s^1 \ldots r^N s^N w^k s
= \text{Re} \{[1 + (rw\beta)^s]/[1 - rw\beta]^s]\}.
\]

The next lemma follows immediately from Lemma 2 and well-known properties of the Poisson kernel in one variable \([2, \text{p. 224}]\).

Lemma 3. Suppose \(\beta, s, \mu, r, w\) are defined as before, and let
\[
\Gamma(\delta) = \{e^{i\theta} : 2\pi\delta < \theta < 2\pi(1 - \delta)\},
\]
and
\[
M(\delta) = \sup \{\text{Re} e^{i\theta} : 0 < R < 1 \text{ and } e^{i\theta} \in \Gamma(\delta)\}.
\]
Then,
(a) \(P[\mu](rw) \leq M(\delta) < \infty\) if \(0 < \delta < \frac{1}{2}\) and \((\omega\beta)^s \in \Gamma(\delta)\), and
(b) \(\lim_{r \to 1} P[\mu](rw) = 0\) whenever \((w\beta)^s \neq 1\).

Lemma 4. Suppose \(p_1, \ldots, p_n\) and \(q_1, q_2, \ldots\) are points of \(T\), and let \(\Gamma\) be a nondegenerate arc on \(T\). To each number \(\eta > 0\), there corresponds an integer \(d > \eta\) and a point \(y \in T\) for which
(a) \((p_k y)^d \in \Gamma\) for \(1 \leq k \leq n\), and
(b) \(1 \notin \{(q_j y)^d : 1 \leq j < \infty\}\).

Proof. A classical theorem of Dirichlet \([4, \text{Volume I, p. 235}]\) implies that for \(\epsilon > 0\), there exists an integer \(d > \eta\) for which \(|1 - (p_k y)^d| < \epsilon\) for \(1 \leq k \leq n\). It follows that if \(\epsilon\) is sufficiently small, there is an open arc \(\Lambda\) on \(T\) such that \((p_k y)^d \lambda \in \Gamma\) whenever \(\lambda \in \Lambda\). Since there are uncountably many points in \(T\) with \(\gamma^d \in \Lambda\), such a point can be chosen so that none of the points \((q_j y)^d\) (for \(1 \leq j < \infty\)) is equal to 1.

The proof of Rudin’s boundary value theorem \([3, \text{Theorem 3.5.3}]\) can now be modified to establish Theorem 1.

Proof of Theorem 1. Let \(\rho\) be a positive continuous function on \(T^n\) and assume without loss of generality that \(\log \rho > 0\). Choose nonnegative trigonometric polynomials \(Q_n\) on \(T^n\) such that \(\log \rho = \sum_{n=1}^{\infty} Q_n\) on \(T^n\), and, for \(n = 1, 2, \ldots\),
\[
\|Q_n\|_{\infty} \leq 2^{1-n} \|\log \rho\|_{\infty}.
\]

Fix \(\delta\) with \(0 < \delta < \frac{1}{2}\). For each \(n = 1, 2, \ldots\), Lemma 4 implies that there exist an integer \(n > \deg(Q_n)\) and a point \(\gamma_n \in T\) such that
(8) \((p_k y_n)^d_n \in \Gamma(\delta)\) for \(1 \leq k \leq n\),

and

(9) \(1 \notin \{(p_j y_n)^d_n; 1 \leq j < \infty\}\).

Let \(s_n = d_n a \in \mathbb{Z}^N\) and choose \(\beta_n \in T^N\) with \((\beta_n)^a = y_n\). As in Lemma 1, let \(E_n = \{w \in T^N: w s_n = 1\}\), \(F_n = \beta_n^{-1} E_n\), \(\nu_n\) the Haar measure for \(E_n\), and \(\mu_n\) the translation of \(\nu_n\) to the coset \(F_n\). Since \(d_n > \deg(Q_n)\), it follows from Lemma 1 that

\[Q_n - Q_n \mu_n \in RP(T^N) \quad \text{for} \quad n = 1, 2, \ldots, \]

and

\[\|Q_n \mu_n\| = \|Q_n\|_1 \quad \text{for} \quad n = 1, 2, \ldots. \]

Let \(d\alpha_n = Q_n \mu_n\). The trigonometric polynomials \(Q_n\) are nonnegative so that

\[\sum \|\sigma_n\| = \sum \|Q_n\|_1 = \int \sum Q_n = \int \log \rho < \infty, \]

and the series \(\sum \sigma_n\) converges in total variation norm to a positive measure \(\sigma\). Since each \(\sigma_n\) is singular (with respect to the Haar measure of \(T^N\)), so is \(\sigma\). Moreover, if \(\alpha\) lies outside the union of the positive and negative cones of \(\mathbb{Z}^N\), then

\[\hat{\sigma}(\alpha) = \sum \hat{\sigma}_n(\alpha) = \sum \hat{Q}_n(\alpha) = (\log \rho)^{\gamma}(\alpha), \]

so that \(\log \rho - d\sigma\) is in \(RP(T^N)\). In particular, there exists a holomorphic function \(g\) on \(U^N\) with

\[\text{Re}\ [g] = P[\log \rho - d\sigma] \]

Define \(f = e^g\). Clearly, \(f\) is in \(H^\infty(U^N)\) since \(\log \rho\) is bounded above and \(\sigma > 0\). Also, \(|f|^* = \rho\ a. e.\ on\ T^N\). In fact, the continuity of \(\rho\) implies

\[\lim_{r \to 1} P[\log \rho](rw) = \log \rho(w), \quad \text{for all} \quad w \in T^N, \]

hence \(|f|^*(w) = \rho(w)\) if and only if

(10) \(\lim_{r \to 1} P[d\sigma](rw) = 0.\)

Thus, it remains to show that \(s_n\) and \(\beta_n\) have been chosen so that (10) holds for all \(w \in A\).

If \(w \in A_k\), then \(w^a = p_k\) and it follows from the choice of \(s_n\) and \(\beta_n\) that

(11) \((w p_k) s_n = (p_k y_n)^d_n\)

for \(n = 1, 2, \ldots\). Hence (8) implies
(12) \((w^\beta_n)^n \in \Gamma(\delta)\) for \(w \in A_k\) and \(n \geq k\),
while (9) gives

(13) \((w^\beta_n)^n \neq 1\) for \(w \in A\) and \(n = 1, 2, \ldots\).

Since

(14) \(P[\sigma_n](rw) \leq \|Q_n\|_\infty P[\mu_n](rw)\),

it now follows from (7), (12), and Lemma 3 that

\[
P[\sigma_n](rw) \leq 2^{1-n} M(\delta) \log \|\rho\| \to_0
\]

for all \(w \in A_k\) and \(n \geq k\). Hence, for each \(w \in A_k\), the series \(\sum_{n=1}^{\infty} P[\sigma_n](rw)\) converges uniformly in \(r\) for \(0 < r < 1\), and so

\[
\lim_{r \to 1} P[\sigma_n](rw) = \lim_{r \to 1} P[\mu_n](rw) = \lim_{r \to 1} P[\alpha_n](rw)
\]

(15)

\[
< 2^{1-n} M(\delta) \to_0
\]

Finally, (13) and Lemma 3 imply that for each \(k = 1, 2, \ldots\), \(\lim_{r \to 1} P[\mu_n](rw) = 0\) if \(w \in A_k\) and \(n = 1, 2, \ldots\), so that by (15), \(\lim_{r \to 1} P[\sigma_n](rw) = 0\) for all \(w \in A\), and the proof is complete.

Proof of Theorem 2. Let \(\rho\) be continuous on \(T^N\) with \(\log \rho > 0\), and choose nonnegative trigonometric polynomials \(Q_n\) such that \(\log \rho = \Sigma Q_n\), and \(\|Q_n\|_\infty \leq 2^{1-n} \log \|\rho\|_\infty\). For each \(n = 1, 2, \ldots\), choose an integer \(k_n\) such that \(3^{k_n} > \deg(Q_n)\) and let \(d_n = 3^{k_n}\). Let \(E_n = \{w \in T^N : (w_1w_2 \cdots w_N)^{d_n} = 1\}, n = 1, 2, \ldots\) be a Haar measure for \(E_n\), and \(d\sigma_n = Q_n dv_n\). If \(\sigma\) and \(f\) are now defined as in the proof of Theorem 1, it remains to show only that \(\lim_{r \to 1} P[\sigma](rw) = 0\) for all \(w \in A\). This will follow exactly as in Theorem 1 from the following estimate:

(16) \(P[\nu_n](rw) \leq M(1/6)\) for \(w \in A, 0 < r < 1,\) and \(n = 1, 2, \ldots\),

where \(M(1/6)\) is the supremum defined in Lemma 3.

To verify (16), observe that \(\lambda \in S\) if and only if

(17) \(\lambda^{3k} \in \Gamma(1/6)\) for each \(k = 0, 1, 2, \ldots\).

If \(w\) is in \(A\), then \(w_1w_2 \cdots w_N\) is in \(S\); in particular, by (17), \((w_1w_2 \cdots w_N)^{d_n} \in \Gamma(1/6)\) for \(n = 1, 2, \ldots\), and (16) follows from Lemma 3.

3. Zero-free functions. In one variable, the unit circle is an (RL)-set. In fact, the function (1) corresponding to the positive continuous function \(\rho\) on \(T\) has the additional property that it never vanishes in \(U\). Whether the torus \(T^N\) is also an (RL)-set when \(N > 1\) is an open question. However, the next theorem shows that in general the possibility of choosing a zero-free function in the definition
Theorem 3. Suppose \(\rho \) is a positive continuous function on \(T^N \) and \(f \) a zero-free function in \(H^\infty(U^N) \) with \(|f|^* = \rho \) for all \(w \in T^N \). Then \(\log \rho \) is in \(RP(T^N) \).

Definition. If \(f \) is a function on \(U^N \) and \(w \in T^N \), the "slice function" \(f_w \) is defined on the unit disc by

\[
f_w(\lambda) = f(\lambda w) \quad (\lambda \in U).
\]

Proof of Theorem 3. Let \(f \) be any function in \(H^\infty(U^N) \) with \(|f|^* \) identically equal to \(\rho \) on \(T^N \). For each \(w \in T^N \), the slice function \(f_w \) is in \(H^\infty(U) \) and \(|f_w| \) has radial limits satisfying

\[
|f_w|^*(\lambda) = \rho(\lambda w) > 0 \quad \text{for all } \lambda \in T.
\]

Since the radial limit of a nonconstant singular inner function on \(U \) must vanish at some point of \(T \), it follows that the inner factor of \(f_w \) is a Blaschke product [1, Chapter 5]. Hence, for each \(w \in T^N \), the least harmonic majorant of \(\log |f_w| \) is the Poisson integral \(P[\log |f_w|^*] \). This implies, by [3, Theorem 3.3.6], that \(P[\log \rho] \) is the least \(N \)-harmonic majorant of \(\log |f| \) in \(U^N \).

Now if \(f \) is never zero in \(U^N \), \(\log |f| \) is its own least \(N \)-harmonic majorant. Hence \(\log |f| = P[\log \rho] \) and it follows [3, p. 73] that \(\rho \in RP(T^N) \).

The final theorem illustrates more dramatically the difference between the situations in one and several variables. In particular, it implies that if \(A \) is the circle \(\{ (\zeta, \zeta) : |\zeta| = 1 \} \) in \(T^2 \), there exists a positive contiguous function \(\rho \) on \(T^2 \) to which there corresponds no zero-free \(f \in H^\infty(U^2) \) with \(|f|^* = \rho \) a.e. on \(T^2 \) and everywhere on \(A \).

Theorem 4. Suppose \(f \) is a function in \(H^\infty(U^2) \) with

\[
|f|^*(\zeta, \zeta) = 1 \quad \text{for all } \zeta \in T,
\]

and such that \(f(\lambda, \lambda) \) never vanishes for \(\lambda \in U \). Then \(\|f^*_w\|_\infty \geq 1 \) for all \(w \in T^N \) (where \(\|f^*_w\|_\infty \) is the essential supremum of \(|f_w|^* \) on \(T \)).

Proof. Let \(F(\lambda) = f(\lambda, \lambda) \) for \(\lambda \in U \). Then \(F \in H^\infty(U) \), \(F \) has no zeros in \(U \), and by (18), \(|F|^* = 1 \) everywhere on \(T \). In particular, \(F \) is a singular inner function. But, the radial limit of a nonconstant singular inner function must vanish at some point of \(T \). So \(F \) must be constant and, in particular,

\[
|(0, 0)| = |F(0)| = 1.
\]

Now suppose \(\|f^*_w\|_\infty < 1 \) for some \(w \in T^N \). Since \(f_w \in H^\infty(U) \), it follows that \(|f_w(\lambda)| < 1 \) for all \(\lambda \in U \). In particular, \(|f(0, 0)| = |f_w(0)| < 1 \), which contradicts (19).
REFERENCES

DEPARTMENT OF MATHEMATICS, CLAREMONT MEN'S COLLEGE, CLAREMONT, CALIFORNIA 91711