Analytic capacity and approximation problems
HTML articles powered by AMS MathViewer
- by A. M. Davie
- Trans. Amer. Math. Soc. 171 (1972), 409-444
- DOI: https://doi.org/10.1090/S0002-9947-1972-0350009-9
- PDF | Request permission
Abstract:
We consider some problems concerning analytic capacity as a set function, which are relevant to approximation problems for analytic functions on plane sets. In particular we consider the question of semiadditivity of capacity. We obtain positive results in some special cases and give applications to approximation theory. In general we establish some equivalences among various versions of the semiadditivity question and certain questions in approximation theory.References
- Alexander M. Davie, Bounded approximation and Dirichlet sets, J. Functional Analysis 6 (1970), 460–467. MR 0275168, DOI 10.1016/0022-1236(70)90073-x
- A. M. Davie, Dirichlet algebras of analytic functions, J. Functional Analysis 6 (1970), 348–356. MR 0267398, DOI 10.1016/0022-1236(70)90066-2
- Alexander M. Davie, Real annihilating measures for $R(K)$, J. Functional Analysis 6 (1970), 357–386. MR 0275167, DOI 10.1016/0022-1236(70)90067-4 A. Denjoy, Sur les fonctions analytiques uniformes à singularités discontinues, C. R. Acad. Sci. Paris 149 (1909), 258-260.
- John Garnett, Positive length but zero analytic capacity, Proc. Amer. Math. Soc. 24 (1970), 696–699; errata, ibid. 26 (1970), 701. MR 0276456, DOI 10.1090/S0002-9939-1970-0276456-5 —, Analytic capacity and measure (to appear).
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- T. W. Gamelin and J. Garnett, Constructive techniques in rational approximation, Trans. Amer. Math. Soc. 143 (1969), 187–200. MR 249639, DOI 10.1090/S0002-9947-1969-0249639-4
- T. W. Gamelin and John Garnett, Pointwise bounded approximation and Dirichlet algebras, J. Functional Analysis 8 (1971), 360–404. MR 0295085, DOI 10.1016/0022-1236(71)90002-4
- T. W. Gamelin and John Garnett, Uniform approximation to bounded analytic functions, Rev. Un. Mat. Argentina 25 (1970/71), 87–94. MR 372209
- L. D. Ivanov, On Denjoy’s conjecture, Uspehi Mat. Nauk 18 (1963), no. 4 (112), 147–149 (Russian). MR 0156995
- Arne Stray, An approximation theorem for subalgebras of $H_{\infty }$, Pacific J. Math. 35 (1970), 511–515. MR 276775, DOI 10.2140/pjm.1970.35.511
- M. Tsuji, Potential theory in modern function theory, Maruzen Co. Ltd., Tokyo, 1959. MR 0114894
- A. G. Vituškin, Analytic capacity of sets in problems of approximation theory, Uspehi Mat. Nauk 22 (1967), no. 6 (138), 141–199 (Russian). MR 0229838
- A. G. Vituškin, Estimate of the Cauchy integral, Mat. Sb. (N.S.) 71 (113) (1966), 515–534 (Russian). MR 0206305
- A. G. Vituškin, Example of a set of positive length but of zero analytic capacity, Dokl. Akad. Nauk SSSR 127 (1959), 246–249 (Russian). MR 0118838
- Lawrence Zalcmann, Analytic capacity and rational approximation, Lecture Notes in Mathematics, No. 50, Springer-Verlag, Berlin-New York, 1968. MR 0227434, DOI 10.1007/BFb0070657
- Bernt Øksendal, $R(X)$ as a Dirichlet algebra and representation of orthogonal measures by differentials, Math. Scand. 29 (1971), 87–103. MR 306919, DOI 10.7146/math.scand.a-11037
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 171 (1972), 409-444
- MSC: Primary 30A82
- DOI: https://doi.org/10.1090/S0002-9947-1972-0350009-9
- MathSciNet review: 0350009