Complete multipliers
HTML articles powered by AMS MathViewer
- by J. S. Byrnes
- Trans. Amer. Math. Soc. 172 (1972), 399-403
- DOI: https://doi.org/10.1090/S0002-9947-1972-0308676-1
- PDF | Request permission
Abstract:
We investigate whether the completeness of a complete orthonormal sequence for ${L^2}( - \pi ,\pi )$ is preserved if the sequence is perturbed by multiplying a portion of it by a fixed function. For the particular sequence $\{ {(2\pi )^{ - 1/2}}{e^{inx}}\}$ we show that given any $\psi \in {L^\infty }( - \pi ,\pi )$, except $\psi = 0$ a.e., there is a nontrivial portion of $\{ {(2\pi )^{ - 1/2}}{e^{inx}}\}$ which will maintain completeness under this perturbation.References
- J. S. Byrnes and D. J. Newman, Completeness preserving multipliers, Proc. Amer. Math. Soc. 21 (1969), 445–450. MR 240546, DOI 10.1090/S0002-9939-1969-0240546-5
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 172 (1972), 399-403
- MSC: Primary 42A64
- DOI: https://doi.org/10.1090/S0002-9947-1972-0308676-1
- MathSciNet review: 0308676