Groups of linear operators defined by group characters
HTML articles powered by AMS MathViewer
- by Marvin Marcus and James Holmes
- Trans. Amer. Math. Soc. 172 (1972), 177-194
- DOI: https://doi.org/10.1090/S0002-9947-1972-0310081-9
- PDF | Request permission
Abstract:
Some of the recent work on invariance questions can be regarded as follows: Characterize those linear operators on $\operatorname {Hom} (V,V)$ which preserve the character of a given representation of the full linear group. In this paper, for certain rational characters, necessary and sufficient conditions are described that ensure that the set of all such operators forms a group $\mathfrak {L}$. The structure of $\mathfrak {L}$ is also determined. The proofs depend on recent results concerning derivations on symmetry classes of tensors.References
- A. C. Aitken, Determinants and matrices, Oliver and Boyd, Edinburgh; Interscience, New York, 1962, pp. 90-110.
- LeRoy B. Beasley, Linear transformations on matrices: The invariance of the third elementary symmetric function, Canadian J. Math. 22 (1970), 746–752. MR 268201, DOI 10.4153/CJM-1970-084-x G. Frobenius, Über die Darstellung der endlichen Gruppen durch lineare Substitutionen. I, S.-B. Preuss. Akad. Wiss. Berlin 1897, 994-1015.
- W. H. Greub, Multilinear algebra, Die Grundlehren der mathematischen Wissenschaften, Band 136, Springer-Verlag New York, Inc., New York, 1967. MR 0224623
- Marvin Marcus, All linear operators leaving the unitary group invariant, Duke Math. J. 26 (1959), 155–163. MR 101241
- Marvin Marcus, Spectral properties of higher derivations on symmetry classes of tensors, Bull. Amer. Math. Soc. 75 (1969), 1303–1307. MR 255584, DOI 10.1090/S0002-9904-1969-12405-5
- Marvin Marcus and William R. Gordon, The structure of bases in tensor spaces, Amer. J. Math. 92 (1970), 623–640. MR 272803, DOI 10.2307/2373365
- Marvin Marcus and Nisar A. Khan, A note on a group defined by a quadratic form, Canad. Math. Bull. 3 (1960), 143–148. MR 124339, DOI 10.4153/CMB-1960-017-4
- Marvin Marcus and Frank May, On a theorem of I. Schur concerning matrix transformations, Arch. Math. 11 (1960), 401–404. MR 130268, DOI 10.1007/BF01236965
- Marvin Marcus and Roger Purves, Linear transformations on algebras of matrices: the invariance of the elementary symmetric functions, Canadian J. Math. 11 (1959), 383–396. MR 105425, DOI 10.4153/CJM-1959-039-4
- Russell Merris, A generalization of the associated transformation, Linear Algebra Appl. 4 (1971), 393–406. MR 294380, DOI 10.1016/0024-3795(71)90011-5 I. Schur, Einige Bemerkungen zur Determinantentheorie, S.-B. Preuss. Akad. Wiss. Berlin 25 (1925), Satz II, 454-463. H. W. Turnbull, Theory of equations, Oliver and Boyd, Edinburgh; Interscience, New York, 1952, pp. 71-72. J. H. M. Wedderburn, Lectures on matrices, Amer. Math. Soc. Colloq. Publ., vol. 17, Amer. Math. Soc., Providence, R. I., 1934, 79pp.
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 172 (1972), 177-194
- MSC: Primary 20G05
- DOI: https://doi.org/10.1090/S0002-9947-1972-0310081-9
- MathSciNet review: 0310081