Integral representation theorems in topological vector spaces
HTML articles powered by AMS MathViewer
- by Alan H. Shuchat
- Trans. Amer. Math. Soc. 172 (1972), 373-397
- DOI: https://doi.org/10.1090/S0002-9947-1972-0312264-0
- PDF | Request permission
Abstract:
We present a theory of measure and integration in topological vector spaces and generalize the Fichtenholz-Kantorovich-Hildebrandt and Riesz representation theorems to this setting, using strong integrals. As an application, we find the containing Banach space of the space of continuous $p$-normed space-valued functions. It is known that Bochner integration in $p$-normed spaces, using Lebesgue measure, is not well behaved and several authors have developed integration theories for restricted classes of functions. We find conditions under which scalar measures do give well-behaved vector integrals and give a method for constructing examples.References
- N. Bourbaki, Éléments de mathématique. XXV. Première partie. Livre VI: Intégration. Chapitre 6: Intégration vectorielle, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1281, Hermann, Paris, 1959 (French). MR 0124722
- I. Colojoară, N. Dinculeanu, and Gh. Marinescu, Measures with values in locally convex spaces, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N.S.) 5(53) (1964), 167–180 (1964). MR 181883
- N. Dinculeanu, Vector measures, Hochschulbücher für Mathematik, Band 64, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966. MR 0206189
- P. L. Duren, B. W. Romberg, and A. L. Shields, Linear functionals on $H^{p}$ spaces with $0<p<1$, J. Reine Angew. Math. 238 (1969), 32–60. MR 259579
- J. R. Edwards and S. G. Wayment, A $v$-integral representation for linear operators on spaces of continuous functions with values in topological vector spaces, Pacific J. Math. 35 (1970), 327–330. MR 274703
- J. R. Edwards and S. G. Wayment, Integral representations for continuous linear operators in the setting of convex topological vector spaces, Trans. Amer. Math. Soc. 157 (1971), 329–345. MR 281867, DOI 10.1090/S0002-9947-1971-0281867-3
- Ciprian Foiaş and Ivan Singer, Some remarks on the representation of linear operators in spaces of vector-valued continuous functions, Rev. Math. Pures Appl. 5 (1960), 729–752. MR 131770
- Robert Kent Goodrich, A Riesz representation theorem, Proc. Amer. Math. Soc. 24 (1970), 629–636. MR 415386, DOI 10.1090/S0002-9939-1970-0415386-2
- Bernhard Gramsch, Integration und holomorphe Funktionen in lokalbeschränkten Räumen, Math. Ann. 162 (1965/66), 190–210 (German). MR 192337, DOI 10.1007/BF01361943
- Bernhard Gramsch, Tensorprodukte und Integration vektorwertiger Funktionen, Math. Z. 100 (1967), 106–122 (German). MR 216280, DOI 10.1007/BF01110787
- D. A. Gregory and J. H. Shapiro, Nonconvex linear topologies with the Hahn Banach extension property, Proc. Amer. Math. Soc. 25 (1970), 902–905. MR 264361, DOI 10.1090/S0002-9939-1970-0264361-X
- J. L. Kelley and Isaac Namioka, Linear topological spaces, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. MR 0166578
- S. Mazur and W. Orlicz, Sur les espaces métriques linéaires. I, Studia Math. 10 (1948), 184–208 (French). MR 29472, DOI 10.4064/sm-10-1-184-208
- Albrecht Pietsch, Nukleare lokalkonvexe Räume, Schriftenreihe Inst. Math. Deutsch. Akad. Wiss. Berlin, Reihe A, Reine Mathematik, Heft 1, Akademie-Verlag, Berlin, 1965 (German). MR 0181888
- Valentin Popescu, Integration with respect to measures with values in arbitrary topological vector spaces, Stud. Cerc. Mat. 18 (1966), 1159–1180 (Romanian). MR 239042
- D. Przeworska-Rolewicz and S. Rolewicz, On integrals of functions with values in a complete linear metric space, Studia Math. 26 (1966), 121–131. MR 192338, DOI 10.4064/sm-26-2-121-131
- Helmut H. Schaefer, Topological vector spaces, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1966. MR 0193469 A. H. Shuchat, Integral representation theorems in topological vector spaces, Dissertation, University of Michigan, Ann Arbor, Mich., 1969.
- Alan H. Shuchat, Approximation of vector-valued continuous functions, Proc. Amer. Math. Soc. 31 (1972), 97–103. MR 290082, DOI 10.1090/S0002-9939-1972-0290082-5
- Ivan Zinger, Linear functionals on the space of continuous mappings of a compact Hausdorff space into a Banach space, Rev. Math. Pures Appl. 2 (1957), 301–315 (Russian). MR 96964
- E. F. Steiner, On finite dimensional linear topological spaces, Amer. Math. Monthly 72 (1965), 34–35. MR 171155, DOI 10.2307/2312994
- Khyson Swong, A representation theory of continuous linear maps, Math. Ann. 155 (1964), 270–291; errata: 157 (1964), 178. MR 0165358, DOI 10.1007/BF01354862 B. L. D. Thorp, Equivalent notions of bounded variation, J. London Math. Soc. 43 (1968), 247-252. P. Turpin and L. Waelbroeck, Sur l’approximation des fonctions différentiables á valeurs dans les espaces vectoriels topologiques, C. R. Acad. Sci. Paris Sér. A-B 267 (1968), A94-A97. MR 38 #2597.
- M. P. Ulanov, Vector-valued set functions and the representation of continuous linear mappings, Sibirsk. Mat. Ž. 9 (1968), 410–425 (Russian). MR 0225151
- Dietmar Vogt, Integrationstheorie in $p$-normierten Räumen, Math. Ann. 173 (1967), 219–232 (German). MR 217254, DOI 10.1007/BF01361712
- Charles Swartz, Absolutely summing and dominated operators on spaces of vector-valued continuous functions, Trans. Amer. Math. Soc. 179 (1973), 123–131. MR 320796, DOI 10.1090/S0002-9947-1973-0320796-5
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 172 (1972), 373-397
- MSC: Primary 46G10; Secondary 28A45, 47B99
- DOI: https://doi.org/10.1090/S0002-9947-1972-0312264-0
- MathSciNet review: 0312264