Characteristic classes of real manifolds immersed in complex manifolds
HTML articles powered by AMS MathViewer
- by Hon Fei Lai
- Trans. Amer. Math. Soc. 172 (1972), 1-33
- DOI: https://doi.org/10.1090/S0002-9947-1972-0314066-8
- PDF | Request permission
Abstract:
Let $M$ be a compact, orientable, $k$-dimensional real differentiaable manifold and $N$ an $n$-dimensional complex manifold, where $k \geq n$. Given an immersion $\iota :M \to N$, a point $x \in M$ is called an RC-singular point of the immersion if the tangent space to $\iota (M)$ at $\iota (x)$ contains a complex subspace of dimension $> k - n$. This paper is devoted to the study of the cohomological properties of the set of RC-singular points of an immersion. When $k = 2n - 2$, the following formula is obtained: \[ \Omega (M) + \sum \limits _{r = 0}^{n - 1} {\tilde \Omega } {(\iota )^{n - r - 1}}{\iota ^ \ast }{c_r}(N) = 2{t^ \ast }DK,\] where $\Omega (M)$ is the Euler class of $M,\widetilde \Omega (\iota )$ is the Euler class of the normal bundle of the immersion, ${c_r}(N)$ are the Chern classes of $N$, and ${t^ \ast }DK$ is a cohomology class of degree $2n - 2$ in $M$ whose value on the fundamental class of $M$ gives the algebraic number of RC-singular points of $\iota$. Various applications are discussed. For $n \leq k \leq 2n - 2$, it is shown that, as long as dimensions allow, all Pontrjagin classes and the Euler class of $M$ are carried by subsets of the set of RC-singularities of an immersion $\iota :M \to {{\text {C}}^n}$.References
- Errett Bishop, Differentiable manifolds in complex Euclidean space, Duke Math. J. 32 (1965), 1–21. MR 200476 E. Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes. I, Ann. Mat. 11 (1932), 17-90.
- Shiing-shen Chern, Topics in differential geometry, Institute for Advanced Study (IAS), Princeton, N.J., 1951. MR 0090080
- Shiing-shen Chern and E. Spanier, A theorem on orientable surfaces in four-dimensional space, Comment. Math. Helv. 25 (1951), 205–209. MR 44883, DOI 10.1007/BF02566455
- Werner Gysin, Zur Homologietheorie der Abbildungen und Faserungen von Mannigfaltigkeiten, Comment. Math. Helv. 14 (1942), 61–122 (German). MR 6511, DOI 10.1007/BF02565612
- L. R. Hunt, The local envelope of holomorphy of an $n$-manifold in $C^{n}$, Boll. Un. Mat. Ital. (4) 4 (1971), 12–35. MR 0294690
- R. Lashof and S. Smale, On the immersion of manifolds in euclidean space, Ann. of Math. (2) 68 (1958), 562–583. MR 103478, DOI 10.2307/1970156
- L. S. Pontryagin, Characteristic cycles on differentiable manifolds, Mat. Sbornik N.S. 21(63) (1947), 233–284 (Russian). MR 0022667
- H. Seifert, Algebraische Approximation von Mannigfaltigkeiten, Math. Z. 41 (1936), no. 1, 1–17 (German). MR 1545601, DOI 10.1007/BF01180402
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- Noboru Tanaka, On the pseudo-conformal geometry of hypersurfaces of the space of $n$ complex variables, J. Math. Soc. Japan 14 (1962), 397–429. MR 145555, DOI 10.2969/jmsj/01440397
- Noboru Tanaka, On generalized graded Lie algebras and geometric structures. I, J. Math. Soc. Japan 19 (1967), 215–254. MR 221418, DOI 10.2969/jmsj/01920215
- René Thom, Un lemme sur les applications différentiables, Bol. Soc. Mat. Mexicana (2) 1 (1956), 59–71 (French). MR 102115
- R. O. Wells Jr., Holomorphic hulls and holomorphic convexity, Rice Univ. Stud. 54 (1968), no. 4, 75–84. MR 241690
- R. O. Wells Jr., Compact real submanifolds of a complex manifold with nondegenerate holomorphic tangent bundles, Math. Ann. 179 (1969), 123–129. MR 237823, DOI 10.1007/BF01350124
- R. O. Wells Jr., Concerning the envelope of holomorphy of a compact differentiable submanifold of a complex manifold, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 23 (1969), 347–361. MR 245835
- Wen-Tsun Wu, Sur les classes caractéristiques des structures fibrées sphériques, Publ. Inst. Math. Univ. Strasbourg, vol. 11, Hermann & Cie, Paris, 1952 (French). MR 0055691
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 172 (1972), 1-33
- MSC: Primary 57D20; Secondary 32C10
- DOI: https://doi.org/10.1090/S0002-9947-1972-0314066-8
- MathSciNet review: 0314066