Ultrafilters and independent sets
HTML articles powered by AMS MathViewer
- by Kenneth Kunen
- Trans. Amer. Math. Soc. 172 (1972), 299-306
- DOI: https://doi.org/10.1090/S0002-9947-1972-0314619-7
- PDF | Request permission
Abstract:
Independent families of sets and of functions are used to prove some theorems about ultrafilters. All of our results are well known to be provable from some form of the generalized continuum hypothesis, but had remained open without such an assumption. Independent sets are used to show that the Rudin-Keisler ordering on ultrafilters is nonlinear. Independent functions are used to prove the existence of good ultrafilters.References
- C. C. Chang and H. J. Keisler, Model theory, North-Holland, New York (to appear).
- R. Engelking and M. Karłowicz, Some theorems of set theory and their topological consequences, Fund. Math. 57 (1965), 275–285. MR 196693, DOI 10.4064/fm-57-3-275-285 G. Fichtenholz and L. Kantorovitch, Sur les opérations linéairs dans l’espace des fonctions bornées, Studia Math. 5 (1934), 69-98. F. Hausdorff, Über zwei Sätze von G. Fichtenholz und L. Kantorovitch, Studia Math. 6 (1936), 18-19.
- Kenneth Kunen, Some applications of iterated ultrapowers in set theory, Ann. Math. Logic 1 (1970), 179–227. MR 277346, DOI 10.1016/0003-4843(70)90013-6
- K. Kunen and J. B. Paris, Boolean extensions and measurable cardinals, Ann. Math. Logic 2 (1970/71), no. 4, 359–377. MR 277381, DOI 10.1016/0003-4843(71)90001-5
- Mary Ellen Rudin, Partial orders on the types in $\beta N$, Trans. Amer. Math. Soc. 155 (1971), 353–362. MR 273581, DOI 10.1090/S0002-9947-1971-0273581-5
- Saharon Shelah, Every two elementarily equivalent models have isomorphic ultrapowers, Israel J. Math. 10 (1971), 224–233. MR 297554, DOI 10.1007/BF02771574
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 172 (1972), 299-306
- MSC: Primary 02J05; Secondary 02H13
- DOI: https://doi.org/10.1090/S0002-9947-1972-0314619-7
- MathSciNet review: 0314619