Varieties of linear topological spaces
Authors:
J. Diestel, Sidney A. Morris and Stephen A. Saxon
Journal:
Trans. Amer. Math. Soc. 172 (1972), 207-230
MSC:
Primary 46A05; Secondary 46B99, 46M15
DOI:
https://doi.org/10.1090/S0002-9947-1972-0316992-2
MathSciNet review:
0316992
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: This paper initiates the formal study of those classes of locally convex spaces which are closed under the taking of arbitrary subspaces, separated quotients, cartesian products and isomorphic images. Well-known examples include the class of all nuclear spaces and the class of all Schwartz spaces.
- [1] Richard F. Arens and James Eells Jr., On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397–403. MR 81458
- [2] S. Banach, Théorie des opérations linéaires, Monografie Mat., PWN , Warsaw, 1932; reprint, Chelsea, New York, 1955. MR 17, 175.
- [3] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151–164. MR 115069, https://doi.org/10.4064/sm-17-2-151-164
- [4] C. Bessaga and A. Pełczyński, A topological proof that every separable Banach space is homeomorphic to a countable product of lines, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 17 (1969), 487–493 (English, with Russian summary). MR 257995
- [5] C. Bessaga, A. Pełczyński, and S. Rolewicz, On diametral approximative dimension and linear homogeneity of 𝐹-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 677–683. MR 132374
- [6] M. S. Brooks, Sidney A. Morris, and Stephen A. Saxon, Generating varieties of topological groups, Proc. Edinburgh Math. Soc. (2) 18 (1972/73), 191–197. MR 318383, https://doi.org/10.1017/S0013091500009913
- [7] Su Shing Chen and Sidney A. Morris, Varieties of topological groups generated by Lie groups, Proc. Edinburgh Math. Soc. (2) 18 (1972/73), 49–53. MR 323958, https://doi.org/10.1017/S0013091500026146
- [8] Paul Civin and Bertram Yood, Quasi-reflexive spaces, Proc. Amer. Math. Soc. 8 (1957), 906–911. MR 90020, https://doi.org/10.1090/S0002-9939-1957-0090020-6
- [9] Mahlon M. Day, Normed linear spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge. Heft 21. Reihe: Reelle Funktionen, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR 0094675
- [10] Joseph Diestel, Sidney A. Morris, and Stephen A. Saxon, Varieties of locally convex topological vector spaces, Bull. Amer. Math. Soc. 77 (1971), 799–803. MR 282188, https://doi.org/10.1090/S0002-9904-1971-12811-2
- [11] E. Dubinsky and M. S. Ramanujan, Power series nuclear spaces (in preparation).
- [12] A. Grothendieck, Sur les applications linéaires faiblement compactes d’espaces du type 𝐶(𝐾), Canad. J. Math. 5 (1953), 129–173 (French). MR 58866, https://doi.org/10.4153/cjm-1953-017-4
- [13] Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR 0075539
- [14] John Horváth, Topological vector spaces and distributions. Vol. I, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. MR 0205028
- [15] M. Ĭ. Kadec′, Linear dimension of the spaces 𝐿_{𝑝} and 𝑙_{𝑞}, Uspehi Mat. Nauk 13 (1958), no. 6 (84), 95–98 (Russian). MR 0101486
- [16] M. I. Kadec and A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces 𝐿_{𝑝}, Studia Math. 21 (1961/62), 161–176. MR 152879, https://doi.org/10.4064/sm-21-2-161-176
- [17] Shizuo Kakutani, Free topological groups and infinite direct product topological groups, Proc. Imp. Acad. Tokyo 20 (1944), 595–598. MR 14093
- [18] N. J. Kalton, Unconditional and normalised bases, Studia Math. 38 (1970), 243–253 (errata insert). MR 276716, https://doi.org/10.4064/sm-38-1-248-253
- [19] Samuel Kaplan, Cartesian products of reals, Amer. J. Math. 74 (1952), 936–954. MR 54944, https://doi.org/10.2307/2372236
- [20] Takako K\B{o}mura and Yukio K\B{o}mura, Über die Einbettung der nuklearen Räume in (𝑠)^{𝐴}, Math. Ann. 162 (1965/66), 284–288 (German). MR 188754, https://doi.org/10.1007/BF01360917
- [21] Elton Lacey and R. J. Whitley, Conditions under which all the bounded linear maps are compact, Math. Ann. 158 (1965), 1–5. MR 173159, https://doi.org/10.1007/BF01370391
- [22] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in 𝐿_{𝑝}-spaces and their applications, Studia Math. 29 (1968), 275–326. MR 231188, https://doi.org/10.4064/sm-29-3-275-326
- [23] Robert H. Lohman, An embedding theorem for separable locally convex spaces, Canad. Math. Bull. 14 (1971), 114–120. MR 291756, https://doi.org/10.4153/CMB-1971-023-1
- [24] A. A. Markov, On free topological groups, Izv. Akad. Nauk SSSR Ser. Mat. 9 (1945), 3-64; English transl., Amer. Math. Soc. Transl. (1) 8 (1962), 195-272. MR 7, 7.
- [25] André Martineau, Sur une propriété universelle de l’espace des distributions de M. Schwartz, C. R. Acad. Sci. Paris 259 (1964), 3162–3164 (French). MR 169051
- [26] S. Mazur and W. Orlicz, Sur les espaces métriques linéaires. II, Studia Math. 13 (1953), 137–179 (French). MR 68730, https://doi.org/10.4064/sm-13-2-137-179
- [27] E. Michael, A short proof of the Arens-Eells embedding theorem, Proc. Amer. Math. Soc. 15 (1964), 415–416. MR 162222, https://doi.org/10.1090/S0002-9939-1964-0162222-5
- [28] A. A. Miljutin, Isomorphism of the spaces of continuous functions over compact sets of the cardinality of the continuum, Teor. Funkciĭ Funkcional. Anal. i Priložen. Vyp. 2 (1966), 150–156. (1 foldout) (Russian). MR 0206695
- [29] Sidney A. Morris, Varieties of topological groups, Bull. Austral. Math. Soc. 1 (1969), 145–160. MR 259010, https://doi.org/10.1017/S0004972700041393
- [30] Sidney A. Morris, Varieties of topological groups, Bull. Austral. Math. Soc. 1 (1969), 145–160. MR 259010, https://doi.org/10.1017/S0004972700041393
- [31] Sidney A. Morris, Varieties of topological groups, Bull. Austral. Math. Soc. 1 (1969), 145–160. MR 259010, https://doi.org/10.1017/S0004972700041393
- [32] Sidney A. Morris, Varieties of topological groups and left adjoint functors, J. Austral. Math. Soc. 16 (1973), 220–227. Collection of articles dedicated to the memory of Hanna Neumann, II. MR 0333059
- [33] Sidney A. Morris, Free products of topological groups, Bull. Austral. Math. Soc. 4 (1971), 17–29. MR 274647, https://doi.org/10.1017/S0004972700046219
- [34] -, Free compact abelian groups (submitted for publication).
- [35] -, Varieties of topological groups, Bull. Austral. Math. Soc. 3 (1970), 429-431.
- [36] Sidney A. Morris, Quotient groups of topological groups with no small subgroups, Proc. Amer. Math. Soc. 31 (1972), 625–626. MR 293000, https://doi.org/10.1090/S0002-9939-1972-0293000-9
- [37] Sidney A. Morris, Locally compact abelian groups and the variety of topological groups generated by the reals, Proc. Amer. Math. Soc. 34 (1972), 290–292. MR 294560, https://doi.org/10.1090/S0002-9939-1972-0294560-4
- [38] Sidney A. Morris, A topological group characterization of those locally convex spaces having their weak topology, Math. Ann. 195 (1972), 330–331. MR 295034, https://doi.org/10.1007/BF01423619
- [39] Hanna Neumann, Varieties of groups, Springer-Verlag New York, Inc., New York, 1967. MR 0215899
- [40] R. E. A. C. Paley, Some theorems on abstract spaces, Bull. Amer. Math. Soc. 42 (1936), no. 4, 235–240. MR 1563277, https://doi.org/10.1090/S0002-9904-1936-06277-4
- [41] N. T. Peck, Every locally convex space is a subspace of a nearly exotic space (to appear).
- [42] A. Pełczyński, On the isomorphism of the spaces 𝑚 and 𝑀, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 6 (1958), 695–696. MR 0102727
- [43] A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209–228. MR 126145, https://doi.org/10.4064/sm-19-2-209-228
- [44] A. Pełczyński, On Banach spaces containing 𝐿₁(𝜇), Studia Math. 30 (1968), 231–246. MR 232195, https://doi.org/10.4064/sm-30-2-231-246
- [45] A. Pełczyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. Rozprawy Mat. 58 (1968), 92. MR 0227751
- [46] A. Pełczyński and Z. Semadeni, Spaces of continuous functions. III. Spaces 𝐶(Ω) for Ω without perfect subsets, Studia Math. 18 (1959), 211–222. MR 107806, https://doi.org/10.4064/sm-18-2-211-222
- [47] E. S. Pondiczery, Power problems in abstract spaces, Duke Math. J. 11 (1944), 835–837. MR 11104
- [48] M. S. Ramanujan, Power series spaces Λ(𝛼) and associated Λ(𝛼)-nuclearity, Math. Ann. 189 (1970), 161–168. MR 270110, https://doi.org/10.1007/BF01352441
- [49] J. R. Retherford and C. W. McArthur, Some remarks on bases in linear topological spaces, Math. Ann. 164 (1966), 38–41. MR 194873, https://doi.org/10.1007/BF01351809
- [50] S. Rolewicz, On a certain class of linear metric spaces, Bull. Acad. Polon. Sci. Cl. III. 5 (1957), 471–473, XL (English, with Russian summary). MR 0088682
- [51] Haskell P. Rosenthal, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from 𝐿^{𝑝}(𝜇) to 𝐿^{𝑟}(𝜈), J. Functional Analysis 4 (1969), 176–214. MR 0250036, https://doi.org/10.1016/0022-1236(69)90011-1
- [52] Stephen A. Saxon, Nuclear and product spaces, Baire-like spaces, and the strongest locally convex topology, Math. Ann. 197 (1972), 87–106. MR 305010, https://doi.org/10.1007/BF01419586
- [53] Stephen A. Saxon, Embedding nuclear spaces in products of an arbitrary Banach space, Proc. Amer. Math. Soc. 34 (1972), 138–140. MR 318823, https://doi.org/10.1090/S0002-9939-1972-0318823-9
- [54] -, (LF)-spaces, quasi-Baire spaces and the strongest locally convex topology (in preparation).
- [55] -, Normalized Schauder bases in Fréchet spaces (in preparation).
- [56] Helmut H. Schaefer, Topological vector spaces, The Macmillan Co., New York; Collier-Macmillan Ltd., London, 1966. MR 0193469
- [57] W. J. Stiles, On properties of subspaces of 𝑙_{𝑝},0<𝑝<1, Trans. Amer. Math. Soc. 149 (1970), 405–415. MR 261315, https://doi.org/10.1090/S0002-9947-1970-0261315-9
- [58] W. Szlenk, The non-existence of a separable reflexive Banach space universal for all separable reflexive Banach spaces, Studia Math. 30 (1968), 53–61. MR 227743, https://doi.org/10.4064/sm-30-1-53-61
- [59] T. Terzioğlu, On Schwartz spaces, Math. Ann. 182 (1969), 236–242. MR 247417, https://doi.org/10.1007/BF01350326
- [60] A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Retrieve articles in Transactions of the American Mathematical Society with MSC: 46A05, 46B99, 46M15
Retrieve articles in all journals with MSC: 46A05, 46B99, 46M15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1972-0316992-2
Keywords:
Products,
subspaces of locally convex spaces,
quotients of locally convex spaces,
Banach spaces,
Fréchet spaces,
nuclear spaces,
Schwartz spaces,
reflexivity,
separability,
weak topology,
strongest locally convex topology,
spaces of continuous functions,
singly generated variety,
universal generator
Article copyright:
© Copyright 1972
American Mathematical Society