Extensions of holomorphic maps
HTML articles powered by AMS MathViewer
- by Peter Kiernan
- Trans. Amer. Math. Soc. 172 (1972), 347-355
- DOI: https://doi.org/10.1090/S0002-9947-1972-0318519-8
- PDF | Request permission
Abstract:
Several generalizations of the big Picard theorem are obtained. We consider holomorphic maps $f$ from $X - A$ into $M \subset Y$. Under various assumptions on $X,A$, and $M$ we show that $f$ can be extended to a holomorphic or meromorphic map of $X$ into $Y$.References
- Phillip A. Griffiths, Complex-analytic properties of certain Zariski open sets on algebraic varieties, Ann. of Math. (2) 94 (1971), 21–51. MR 310284, DOI 10.2307/1970733
- Heisuke Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; 79 (1964), 205–326. MR 0199184, DOI 10.2307/1970547
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
- Shoshichi Kobayashi and Takushiro Ochiai, Satake compactification and the great Picard theorem, J. Math. Soc. Japan 23 (1971), 340–350. MR 296357, DOI 10.2969/jmsj/02320340
- Myung H. Kwack, Generalization of the big Picard theorem, Ann. of Math. (2) 90 (1969), 9–22. MR 243121, DOI 10.2307/1970678
- Reinhold Remmert, Holomorphe und meromorphe Abbildungen komplexer Räume, Math. Ann. 133 (1957), 328–370 (German). MR 92996, DOI 10.1007/BF01342886
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 172 (1972), 347-355
- MSC: Primary 32H25
- DOI: https://doi.org/10.1090/S0002-9947-1972-0318519-8
- MathSciNet review: 0318519