Iterated fine limits and iterated nontangential limits
HTML articles powered by AMS MathViewer
- by Kohur Gowrisankaran
- Trans. Amer. Math. Soc. 173 (1972), 71-92
- DOI: https://doi.org/10.1090/S0002-9947-1972-0311927-0
- PDF | Request permission
Abstract:
Let ${\Omega _k},k = 1{\text { to }}n$, be harmonic spaces of Brelot and ${u_k} > 0$ harmonic functions on ${\Omega _k}$. For each $w$ in a class of multiply superharmonic functions it is shown that the iterated fine limits of $[w/{u_1} \cdots {u_n}]$ exist up to a set of measure zero for the product of the canonical measures corresponding to ${u_k}$ and are independent of the order of iteration. This class contains all positive multiply harmonic functions on the product of ${\Omega _k}$’s. For a holomorphic function $f$ in the Nevanlinna class of the polydisc ${U^n}$, it is shown that the $n$th iterated fine limits exist and equal almost everywhere on ${T^n}$ the $n$th iterated nontangential limits of $f$, for any fixed order of iteration. It is then deduced that, with the exception of a set of measure zero on ${T^n}$, the absolute values of the different iterated limits of $f$ are equal. It is also shown that the $n$th iterated nontangential limits are equal almost everywhere on ${T^n}$ for any $f$ in ${N_1}({U^n})$.References
- M. Brelot, Lectures on potential theory, Lectures on Mathematics, vol. 19, Tata Institute of Fundamental Research, Bombay, 1960. Notes by K. N. Gowrisankaran and M. K. Venkatesha Murthy. MR 0118980 —, Séminaire de théorie du potentiel. II, Institut Henri Poincaré, Paris, 1958.
- M. Brelot and J. L. Doob, Limites angulaires et limites fines, Ann. Inst. Fourier (Grenoble) 13 (1963), no. fasc. 2, 395–415 (French). MR 196107, DOI 10.5802/aif.152 A. P. Caledrón and A. Zygmund, Contributions to Fourier analysis, Ann. of Math. Studies, no. 25, Princeton Univ. Press, Princeton, N. J., 1950, pp. 145-165. MR 12, 255.
- C. Constantinescu and A. Cornea, Über das Verhalten der analytischen Abbildungen Riemannscher Flachen auf dem idealen Rand von Martin, Nagoya Math. J. 17 (1960), 1–87 (German). MR 123703, DOI 10.1017/S0027763000002063
- Kohur Gowrisankaran, Extreme harmonic functions and boundary value problems, Ann. Inst. Fourier (Grenoble) 13 (1963), no. fasc. 2, 307–356. MR 164051, DOI 10.5802/aif.148
- Kohur Gowrisankaran, Fatou-Naïm-Doob limit theorems in the axiomatic system of Brelot, Ann. Inst. Fourier (Grenoble) 16 (1966), no. fasc. 2, 455–467 (English, with French summary). MR 210917, DOI 10.5802/aif.248
- Kohur Gowrisankaran, Multiply harmonic functions, Nagoya Math. J. 28 (1966), 27–48. MR 209513, DOI 10.1017/S0027763000023904
- R.-M. Hervé, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier (Grenoble) 12 (1962), 415–571 (French). MR 139756, DOI 10.5802/aif.125
- Walter Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0255841
- Laurent Schwartz, Radon measures on arbitrary topological spaces and cylindrical measures, Tata Institute of Fundamental Research Studies in Mathematics, No. 6, Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, London, 1973. MR 0426084
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 173 (1972), 71-92
- MSC: Primary 31D05; Secondary 31B25
- DOI: https://doi.org/10.1090/S0002-9947-1972-0311927-0
- MathSciNet review: 0311927