On trigonometric series associated with separable, translation invariant subspaces of $L^{\infty }(G)$
HTML articles powered by AMS MathViewer
- by Ron C. Blei
- Trans. Amer. Math. Soc. 173 (1972), 491-499
- DOI: https://doi.org/10.1090/S0002-9947-1972-0313715-8
- PDF | Request permission
Abstract:
$G$ denotes a compact abelian group, and $\Gamma$ denotes its dual. Our main result is that every non-Sidon set $E \subset \Gamma$ contains a non-Sidon set $F$ such that $L_F^\infty (G) = { \oplus _l}1_{i = 1}^\infty {C_{{F_i}}}(G)$, where the ${F_i}$’s are finite, mutually disjoint, and $\cup _{i = 1}^\infty {F_i} = F$.References
- Stephen William Drury, Sur les ensembles de Sidon, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A162–A163 (French). MR 271647
- Alessandro Figà-Talamanca, An example in the theory of lacunary Fourier series, Boll. Un. Mat. Ital. (4) 3 (1970), 375–378 (English, with Italian summary). MR 0265853
- Yitzhak Katznelson and Carruth McGehee, Measures and pseudomeasures on compact subsets of the line, Math. Scand. 23 (1968), 57–68 (1969). MR 251460, DOI 10.7146/math.scand.a-10897
- O. Carruth McGehee, Certain isomorphisms between quotients of a group algebra, Pacific J. Math. 21 (1967), 133–152. MR 223833, DOI 10.2140/pjm.1967.21.133
- Haskell P. Rosenthal, On trigonometric series associated with weak$^{\ast }$ closed subspaces of continuous functions, J. Math. Mech. 17 (1967), 485–490. MR 0216229, DOI 10.1512/iumj.1968.17.17029
- Walter Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203–227. MR 0116177, DOI 10.1512/iumj.1960.9.59013
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- Nicholas Th. Varopoulos, Sur les ensembles parfaits et les séries trigonométriques, C. R. Acad. Sci. Paris 260 (1965), 3831–3834 (French). MR 182840
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 173 (1972), 491-499
- MSC: Primary 43A25
- DOI: https://doi.org/10.1090/S0002-9947-1972-0313715-8
- MathSciNet review: 0313715