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ABSTRACT. G denotes a compact abelian group, and T denotes its dual.

Our main result is that every non-Sidon set E C T contains a non-Sidon set F

such that  Lp(G) = (¡}i ._, Cp. (G), where the F.'s are finite, mutually disjoint,

«d ur=iF.= F.

0.   Introduction.  Let  G  be a locally compact abelian group with Haar mea-

sure dx, and let  Y denote its dual with Haar measure  dy.   A(G) denotes the Gel-

fand representation of the convolution algebra  L  (D = L  (Y, dy). Aie) is a

dense subspace of  CJG), the Banach algebra of all continuous functions on  G

which vanish at infinity.  A1(G) denotes the convolution algebra of all complex

valued finite regular measures on  G.   If p £ M(G), then the Fourier-Stieltjes trans-

form of p  is the uniformly continuous function on  F defined by

(l(y) =   J     (x, - y)dß(x),       y £ Y.

We let G , denote the abelian group  G  endowed with the discrete topology.

(G ,)  , the dual group of G ,, is denoted by  Y, the Bohr compactification of T.

r is dense on  Y, and  C(Y) can be naturally identified with the almost periodic

functions on  Y.

Let ECT  and let  ¡(E) = \f £ A(Y): / = 0  on  E\. We set A(E) = A(Y)/l(E),

where the quotient is the usual Banach algebra quotient.   An element of A(E) may

be viewed as the restriction to £  of a function in /4(D.  Clearly, A(E) C CAe);

A(E)  is dense in  CQ(E), and   ||g||A(E) > UglL for all  g £ /4(E).  When  A(E) = CQ(E),

and r is a nondiscrete group, we say that  E  is a Helson set;  when T is a dis-

crete group, we say that E  is a Sidon set (cf. [7, Chapter 5]).  We define the Hel-

son (Sidon) constant of a set E Z Y to be

h(E) = inf \\\f \\J\\f\\A(E): f £ A(E),f 4 0\.
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Clearly, E   is a Helson (Sidon) set if and only if  h(E) > 0.

When  E C T, Y a discrete group, and   B(G)  is any subspace of  L  (G), we set

Bp(G) = {f £ B(G). f= 0  outside   El.

We consider the following inclusion,

L™iG)2CEiG)2AEiG).

It is easy to see that  L°/¡ÍG) = A p(G) if and only if  E  is a Sidon set.   Also, if

CpiG) = A Ag), then  E  is a Sidon set.

Non-Sidon sets  E C Z  such that L°f¡ÍT) = CFiT) (we refer to such sets as

P-sets) were first constructed by Rosenthal [5], who subsequently conjectured

that every non-Sidon  E C Z  contained a non-Sidon set  F  such that  L°/¡ÍT) = CpiT).

In §2 we prove the above conjecture where  E  is any non-Sidon set in any discrete

abelian group (Corollary 2.4).   In what follows below, we search for non-Sidon sets

E C r for which there exists a partition, |E.S°1     so that the  F.'s are finite,

E . n E . = 0 if  i /- j,  U°l, F . = E  and  CpÍG)  is isomorphic to  fj) j °1.  Cp (G)

(see Definition 1.1).  Not every non-Sidon set can be so partitioned.   Theorem 2.1

states that every non-Sidon set FCT  contains a non-Sidon set  E, so that  F  can

be partitioned in the above sense.  To prove 2.1, we first generalize a result of

Katznelson and McGehee, and prove that every countable and closed non-Helson

subset of a compact abelian group contains a non-Helson set which can be parti-

tioned (Theorem 1.2).  We then, using Dairy's theorem (cf. [l]), reduce the problem

of constructing partitions in discrete abelian groups to that of constructing parti-

tions in compact abelian groups.  Having established 2.1, we obtain Corollary 2.4.

1.   Sup-norm additivity in LCA groups.

Definition 1.1.  Let G  be a locally compact abelian group, and let  E  be a

countable subset of  G.   E  is said to be partitioned with respect to the supremum

norm, if there exists a family of finite, mutually disjoint sets, lE.i, such that the

following hold:

(i)  U7 E, = E-

(ii)  There exists a constant  K > 0  such that if p £ MÍE)  and  p. denotes the

restriction of p  to  E ., then, given any  N > 0,

N

7 = 1

N

7=1

[E.j  is said to be a sup-norm partition of  E.

We note that every countable Helson (Sidon) set can be partitioned in the

above sense.   The following theorem is a generalization of a result by Katznelson

and McGehee (cf. [3, Theorem 3.ll):
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Theorem 1.2.   Let  G  be a locally compact abelian group, and let Y = G.   If

E C r  is a non-Helson, countable and compact set with a finite number of accumu-

lation points, then  E  contains a non-Helson set  F, such that  F  can be partitioned

with respect to the sup-norm.

The following lemma is a generalization of Lemma I of [8]:

Lemma 1.3.   Given  e > 0, and T, a compact symmetric neighborhood of 0   in G.

Then, there exists  A, a compact neighborhood of 0  in Y, such that if p £ Af(A),

then  |p(gj) - p(g2)| < e|lplL whenever g,-g2  e T.

Proof.  We first show that there is  A, a compact neighborhood of 0  in  Y,

such that

(1) ||l-(g, x)\\A(&)<t    whenever g £ T.

By a theorem of Wienet, if g  is fixed, then there exists  A = A   , a compact neigh-

borhood of 0  in  T. such that   ||l - (g, X)\\A,¿^  ) < e.  It ig, , • • ■ , g   i  is a finite

subset of G, then, letting A = O"     A„   , we obtain' ' o "; -i       g • '

(2) l|l-(g;.*)|U(A)<f    for   ' = 1, •■•,«•

Let g    £T be fixed, and let Ag     be a compact neighborhood of 0 so that

II1 ~~ ((Si' x)|!/wa    ) < e'  Then, by the definition of A (A     ), there exists  / e Ll(G)

such that f(x) = 1 - (g     x)  for xeAg    and   ||/ ||. < e .  Now, choose  k £ L   (G)

so that k = 1  on A„    and k = 0 outside a compact set;   let h = k * 8„     (8„    de-

noted the pt. mass measure at g.).  Clearly, h(x) = (g     x)  on A„   .  Since transla-

tion is continuous in  L  (G), there exists   11, an open neighborhood of 0 in  G,

such that

(3) \\h     _      -h\\ <f-||/||    , whenever g    -g    £ ll.
82   8l l7g) l7g) 2        1

But, for x £ A„     we have
1

(Äg2-8irU) = (g2 "«I- X)¡;{X)= («2 "St' X^SV x) = ig2. *)•

If we now let s = / - ¿g   _g    + h, we obtain  s(x) = 1 - (g     x) for x e Ag   , and

by (3),

l7g) g2   8i 1

Therefore, \\s \\AlA     , < e, and we finally deduce that

II1-(g2. *)IU(A    )<f    whenever g2 e '11 +g r
«1

Now, for each  g £ T we produce   !I = 11(g)  as above.   But, by the compactness of
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T, there exist ig. , • • • , g   !  so that
l

(4) PC U(g!+H(g,)).
isl

Let A = D"=1 Ag., and, as in (2), we have   || 1 - ig, x)\\A       < c fot all g £ T.

Having proved (1), we easily establish the conclusion of the lemma:  If p £ MÍA)

and g2 - g i e r' then

|p(g2)-p(g1)|<Kl-(z§2-g1. ^),P)|

<\\l-ig2-g1.x)\\A(Jd\\oa<e\\fi\\x,

and the lemma is proved.     □

We proceed to establish generalizations of lemmas about finitely supported

measures (cf. [4]).

Definition 1.4.  A subset  K  of G  is said to be relatively dense in  G  if

finitely many translates of  K cover  G.

Lemma 1.5.  // U  is a symmetric neighborhood of 0  in  G, the Bohr compacti-

fication of G, then  U n G  is relatively dense in G.

Proof.  Claim.   \J     r ig + U) = G.  For, if h e G, then  h + U  is a neighborhood

of h  in  G.  By the density of  G  in  G, there exists  g £ G  such that g £ h + U.

Therefore, by the symmetry of  U,  h £ g + U, and claim is proved.

Since  G  is compact, we can find |g   ,...,j„|  so that U =t ig ■ + U) = G.

Therefore,
N

IJ  (g . + (U n G)) = G.       □
z' = l

Lemma 1.6. Let F = \x ̂ , • • • , *N | C T ÍG = D, then hÍF) > il/N)l/i (h(F) =

Helson constant of F).

Proof.  Suppose  p £ MÍF). Since  F  is a finite set, p £ CÍG).  Therefore, by

Plancherel's theorem,

>(At)z i^;î)i-   d

Lemma 1.7. Let F be a finite set in T. Then, given e> 0, there exists U,

a compact neighborhood of 0 in G, such that if g £ G, then every translate of U

in G  contains an element z, so that

\piz)-pig)\<c\\p\\00    for all p £ MÍF).
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Proof.  Let p £ M(F) he arbitrary.   By Lemma 1.6, we have that

\fi(g) - p(z)\ =   £  ^(ix;i)((g, X.) - (z, X.))

7=1

495

<Nl/2\\fi\ sup     (|1 - (g

1<;'<N
z, X.)\)

where  N = number of elements of  F.   But, V = \w: 11 - (w, x .)j < t//V    ,  / = l,---, N\

is a symmetric neighborhood of 0  in  G.   Therefore, by Lemma 1.5, V O G  is rela-

tively dense;   i.e., there exist g. , • • • , g^£ G  so that  \J._. (g . + V Pi G) = G. Now,

take any compact neighborhood of  0  in  G, say  C, and let   U = U-=i (¿? • + C). It is

easy to see that  U  satisfies the requirements of the lemma.     □

We are now ready to establish Theorem 1.2:  Without loss of generality, we can

assume that 0 £ Y is the only accumulation point of E.   Therefore, if   U is any

neighborhood of 0  in  F, then   U HE  is a non-Helson set.  We shall construct induc-

tively a sup-norm partition,  lE.i°l  , for a non-Helson subset of E.

Let  1/500 > e > 0  be given, and let (e.) be a sequence of real numbers such

that

2   X 7 < i,
7=1

and   e. > 0.
i

Let  F     be any finite subset of E   so that h(F A < e. ;   suppose that k > 2  and that

F , ■ ■ ■ , F,      , finite subsets of E, were chosen.  For each j < k — 1, there exists

U ., a compact neighborhood of 0  in  G, such that if g£G, every translate of U .

in  G  contains an element z  so that

(i) |p(*)-ft(g>,<<jll,ilL>

for all p e Al(E .)  (Lemma 1.7).

By Lemma 1.3, there exists A, , a compact neighborhood of  0  in  Y, such that

AI(A, and  u   — u   £ U, + + U, then

(2) p(u ) - p(uA\ < e, ||p |

We now select  F,, a finite subset of A, n E\i0i, such that  F, n E . = 0 for all

j < k - 1, and  h(F A < e,.  Having completely described our selection process, we

shall now prove that if p . e Al(F .),   I < / < k, then

(*) Or-^ZII^L^IfZiy
7 = 1 7 = 1

Clai The range of  (2*_. p.)" is  (e Zk_,
7-1   f? 7-1

o)-dense in range of p    +

+ range of p.,. Consider  S._, /Î . (z .), where  z,, • • • , z,   are arbitraty elements in G.
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Let y, = z     and assume that y, , ■ • • , y . + .   were picked for 0 < j < k - 1.  We

select  y . so that

(3)' >', y,+i e  (/.    and Ißjiyjr-ßjiZj)] <^WpI

(The choice is possible by (1).) Having thus chosen  y   , ■ • • , y, , we have for

1 < j <k,

y i -^7 = (yi -y2) + "' + (>';-i -y? eui + ■•■ + ui-v

Recalling that  p . £ A4 (A .), we obtain by (2)

(4) í^-WISe^lL.

Combining (3) and (4), we have

\ptiyi) ~ß.iz.)\ <2í.||p.

Finally,

(5)

/e Ze

7 = 1 7 = 1

< «   Z   ||iy|
7 = 1

and the claim is proved.

For each  /,   Jc p.ix)dx = 0, since p.(loS) = 0.   Therefore, Re ¿Î. and Im p.

must both assume positive and negative values.   It then easily follows that there

exist g .,-•-, g, £ G  so that

\ k \      .     k

(6)
l;'=l

>7Eliyl
7 = 1

(*) now follows from (5) and (6).  Since  MeJ — 0  as  k — «.,  E = U^=1 Ffe c E

is non-Helson, and the theorem is proved.     D

We note that the above technique of producing sup-norm partitions of non-Hel-

son subsets of countable sets in compact groups cannot be applied in the obvious

way to subsets of discrete groups.   For example, if E   is any subset of  Z, and

c > 0, 8 > 0 ate given, we cannot conclude that there exists   K, a sufficiently large

integer, for which all p £ MÍE\[- K, K]) ate so that   |p (r. ) - p UA\ < c \\p\\x when-

ever   |r. — Z-1 < 8. •

2.  Sup-norm additivily in discrete abelian groups.

Theorem 2.1.   Let  Y be an infinite discrete abelian group, and let  E C Y be

non-Sidon.   Then, there exists  F C E  such that  F  can be partitioned with respect

to the sup-norm, and F  is a non-Sidon set.

Remark.  It is clear that £CF is a Sidon set if and only if every countable

subset of E  is a Sidon set.   Therefore, we may assume without loss of generality
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that E  is countable, and hence that Y is countable.

Since  r  is countable, Y = G  is a compact metrizable group (cf. [7, 2.2.6]),

and therefore, there exists  D, a countable, dense subgroup of G.   Consider D  as

a discrete abelian group, and let ef>: Y —» D  he the natural injective map:

(çS (y), d) = (y, d) for y £ D and d £ D.  We shall say that F C D  is a Sidon set if

F  is a Sidon set in  (D)d,  D  discretized.

Lemma 2.2.   Let Y, </>, D  be as above.   Then, E CY  is Sidon if and only if

0(E)  is Sidon.   Furthermore, h(E) = h(ep(E)).

Proof.  To prove the lemma it suffices to show that if ia i"      is any finite
r 2 2-1 J

set of complex numbers, then

(1) sup

xeG

T,aiiyi,x]

2=1

sup

yen

Z ai^y^' y~>
2 = 1

where  y. £ E,   i - I, ■ ■ ■ , n, and  D = (D),, the Bohr compactification of D.

Since  D  is dense in  D, we have

sup

ye/3

y^a^cffy^y)
2 = 1

sup

x€D

Z ai(cf>(yi),x)
2=1

But D  was chosen to be dense in  G, and hence it follows from the definition of

et, that

sup

X € D

Z ai(eß(yi),x)

2 = 1

sup

x€ D
Z «¿ty,-»*)
2 = 1

(1) now follows, and lemma is proved.     D

Lemma 2.3. Let iyi"!. =ECT be a non-Sidon set. Let cf> be as in Lemma

2.2. Then, there exists iyy i?° = F C E, F non-Sidon, and <p(E) (closure in D)

is a countable set with one accumulation point.

Proof.   First, we claim that there exists  x    £ cp(E)  such that if  U  is any

open set containing x     then  <f>~   (U) nE  isa non-Sidon set.  Suppose this were

not so.   Then, for each  x £ cp(E) there exists an open set, U  , so that x e U   ,

and d>~   (U  ) Pi E   is a Sidon set.   By the compactness of <f>(E), there exist

Xj,... ,*B e ctMÉ), so that  U*     Ux. DrplË).  But, E = U?a, 0_1(c/x.) Pi E  is a

Sidon set by Drury's theorem (cf. [l]).

Now let   iV   i°°_.   be a family of open sets so that  V   2 V   , ,   and  0°°_, V
72   72-1 If 7!   * 72 + 1 '    '72-1        72

= \xA.  Let  F    C <tj-1(V.) C\E  be any finite set.  We proceed inductively to select

E    C cb~   iV ) O E, such that F     is finite, Sidon constant of  F    < 1/n, and  F   P
72 ~ 72 72 72 ' 72

F . = 0 fot i < 77.   Let  F = I j°°_, F  . The conclusion of the lemma easily follows. □
7      >" ' ^-*n-l     72 '
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We are now ready to prove Theorem 2.1:   By the preceding lemma, produce

E   C E   such that  E    is a non-Sidon set, and cf>ÍE )  is a countable set with one

limit point.   By Theorem 1.2, find S C </>(E ) so that 5  is non-Helson (therefore,

also non-Sidon) such that S  can be partitioned with respect to the sup-norm. But,

sup

x£G z' = l

=   sup

yen
T ^.(0(yz),y)
z = l

(see proof of Lemma 2.2), and it easily follows that E = tp~   (S) C E  can be parti-

tioned with respect to the sup-norm.  In fact, the inverse image under çS  of the

partition for S  is a partition for F.

Corollary 2.4.   Let Y be an infinite discrete abelian group, and let E C Y be

non-Sidon.   Then, there exists  F C E  so that  F  is non-Sidon, and F  is an R-set.

Proof.  Let  F C E  be non-Sidon, so that  E  can be partitioned with respect to

the sup-norm via  IF   i.   For each  N,  kN £ L  (G)  is chosen so that   ||&.J. < 2,

k„  has compact support, and  kAy) = 1  whenever y e (J  _   F  .  Suppose / e L™(G).

Given any  N, and letting /   = 2 fiy)iy, ■ )i we have that
7z y e f n

Z ll/JL=Z »'<*„•/>JL<cü*N */L<2C|l/L"
7Z=1 72=1

Since  N  is arbitrary, 2°°_   \\f  ||CXJ< °°, and it follows that f £CpiG).    O

Remark.  When Y = Z, the mapping </>  as defined in the remark preceding

Lemma 2.2 can be realized as follows:   Let  a  be a given irrational number in  T.

Let cf> a = cf> be the map from  Z  into  T so that </>(tz) = na mod  2z7.   As in Lemma

2.3, if E C Z   is a non-Sidon set, then there exists x    £ cf>(E)"  (where closure is

taken in the usual topology of  T) such that if  U is any neighborhood of x     then

cf>~   ÍU) OE  is non-Sidon.  We then proceed, as in Theorem 2.1 to construct  F C E

non-Sidon, so that  F  can be partitioned with respect to the sup-norm.  It seems

natural to ask whether the above technique of "wrapping" subsets of integers in

the circle group can be used to explore other structural properties of  Z  by inves-

tigating their analogues on  T.

It is clear that not every closed subset of  T can be realized in the form of

\n .al~ , where  ire.!"!. C Z, and  a is an irrational number (e.g., closed independent

sets in  T).  It is an open question whether whenever E C Z  is Sidon, E  is a Hel-

son set in  Z   (E = closure of E  in the Bohr compactification of Z).  It turns out

that when we "close"   E   in  T, we are in a somewhat less complicated situation

than the one where we form  E  in  Z.  If  a  is a fixed irrational number, then there

exist Sidon sets, in. I C Z, so that \n .al~ = T: Arrange the rationals in  T in a se-

quence, ír.¡°l    in such a way that every rational occurs infinitely many times in
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the arrangement.  Now suppose  72 r, • • • , 72. were picked for / > 1.  It is clear that

E . = \an: n > 3n A is dense in  T.   Select n . +. > 3n .  so that   \\an . + . - r . +  || < 1/].

It is now clear that  {a.72.S°l    is dense in   T.   Going in the other direction, we pro-

duce a Sidon set, E C Z, so that iaE¡~ = T for almost all  a in   T:  Let S =

\(e.,---,eN): N £ Z, e. = 0, l\.  Fix y e S, and set  F    = i a C T: y does not occur

anywhere in the binary expansion of  a\.  It is easy to check that 722(F) = 0, and

hence  7tz(M   c . F   ) = 0.   But if we let  E = Í 27î°l1, then for all   ae^ I  F     ç E„ ,

(aE)" = T.

3.   Open questions.   1.   Let  U(T) = \f £ C(T): S¿f) = V_J(n)eint  converge

uniformly to / S.  Figà-Talamanca constructed in [2] a non-Sidon set E C Z   such

that  UE(T) = CE(T).  Therefore, by Corollary 2.4 we can produce a non-Sidon set

such that  Lg (T) = UE(T).  In fact, out methods show that every non-Sidon set

E C Z  contains a non-Sidon set  E  for which there exists (72, ) such that SnXf)

converge uniformly to /, for all ¡£ L°Z(T).  Given a non-Sidon set E C Z, does there

exist  F C E,  F  non-Sidon, and  U AT) = Lp(T)?

2. We note that Lp (G) = C„(G) if and only if L°^(G) is separable. Can an

P-set E C Z be constructed so that E cannot be partitioned with respect to the

sup-norm?
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