ON TRIGONOMETRIC SERIES ASSOCIATED WITH
SEPARABLE, TRANSLATION INVARIANT SUBSPACES OF $L^\infty(G)$ (1)

BY
RON C. BLEI

ABSTRACT. G denotes a compact abelian group, and Γ denotes its dual.
Our main result is that every non-Sidon set $E \subset \Gamma$ contains a non-Sidon set F
such that $L^\infty_F(G) = \bigoplus_{i=1}^{\infty} C^\infty_F_i(G)$, where the F_i's are finite, mutually disjoint,
and $\bigcup_{i=1}^{\infty} F_i = F$.

0. Introduction. Let G be a locally compact abelian group with Haar measure dx, and let Γ denote its dual with Haar measure dy. $A(G)$ denotes the Gel-
fand representation of the convolution algebra $L^1(\Gamma) = L^1(\Gamma, dy)$. $A(G)$ is a
dense subspace of $C^\infty_0(G)$, the Banach algebra of all continuous functions on G
which vanish at infinity. $M(G)$ denotes the convolution algebra of all complex
valued finite regular measures on G. If $\mu \in M(G)$, then the Fourier-Stieltjes transform of μ
is the uniformly continuous function on Γ defined by
$$\tilde{\mu}(\gamma) = \int_G (x, -\gamma) d\mu(x), \quad \gamma \in \Gamma.$$

We let G_d denote the abelian group G endowed with the discrete topology.
$(G_d)^\wedge$, the dual group of G_d, is denoted by $\overline{\Gamma}$, the Bohr compactification of Γ.
Γ is dense on $\overline{\Gamma}$, and $C(\Gamma)$ can be naturally identified with the almost periodic
functions on Γ.

Let $E \subset \Gamma$ and let $I(E) = \{f \in A(\Gamma) : f = 0 \text{ on } E\}$. We set $A(E) = A(\Gamma)/I(E),$
where the quotient is the usual Banach algebra quotient. An element of $A(E)$ may
be viewed as the restriction to E of a function in $A(\Gamma)$. Clearly, $A(E) \subset C^\infty_0(E)$;
$A(E)$ is dense in $C^\infty_0(E)$, and $\|g\|_{A(E)} \geq \|g\|_\infty$ for all $g \in A(E)$. When $A(E) = C^\infty_0(E)$,
and Γ is a nondiscrete group, we say that E is a Helson set; when Γ is a dis-
crete group, we say that E is a Sidon set (cf. [7, Chapter 5]). We define the Hel-
son (Sidon) constant of a set $E \subset \Gamma$ to be
$$b(E) = \inf \{\|f\|_\infty / \|f\|_{A(E)} : f \in A(E), f \neq 0\}.$$
Clearly, E is a Helson (Sidon) set if and only if $h(E) > 0$.

When $E \subset \Gamma$, Γ a discrete group, and $B(G)$ is any subspace of $L^1(G)$, we set

$$B^*(E) = \{ f \in B(G) : \hat{f} = 0 \text{ outside } E \}.$$

We consider the following inclusion,

$$L^\infty_E(G) \supseteq C_E(G) \supseteq A_E(G).$$

It is easy to see that $L^\infty_E(G) = A_E(G)$ if and only if E is a Sidon set. Also, if $C_E(G) = A_E(G)$, then E is a Sidon set.

Non-Sidon sets $E \subset \mathbb{Z}$ such that $L^\infty_E(T) = C_E(T)$ (we refer to such sets as R-sets) were first constructed by Rosenthal [5], who subsequently conjectured that every non-Sidon $E \subset \mathbb{Z}$ contained a non-Sidon set F such that $L^\infty_F(T) = C_F(T)$. In §2 we prove the above conjecture where E is any non-Sidon set in any discrete abelian group (Corollary 2.4). In what follows below, we search for non-Sidon sets $E \subset \Gamma$ for which there exists a partition, $\{ F_j \}_{j=1}^\infty$, so that the F_j's are finite, $F_i \cap F_j = \emptyset$ if $i \neq j$, $\bigcup_{i=1}^\infty F_i = E$ and $C_E(G)$ is isomorphic to $\bigoplus_{i=1}^\infty C_{F_i}(G)$ (see Definition 1.1). Not every non-Sidon set can be so partitioned. Theorem 2.1 states that every non-Sidon set $E \subset \Gamma$ contains a non-Sidon set F, so that F can be partitioned in the above sense. To prove 2.1, we first generalize a result of Katznelson and McGehee, and prove that every countable and closed non-Helson subset of a compact abelian group contains a non-Helson set which can be partitioned (Theorem 1.2). We then, using Drury's theorem (cf. [1]), reduce the problem of constructing partitions in discrete abelian groups to that of constructing partitions in compact abelian groups. Having established 2.1, we obtain Corollary 2.4.

1. Sup-norm additivity in LCA groups.

Definition 1.1. Let G be a locally compact abelian group, and let E be a countable subset of G. E is said to be partitioned with respect to the supremum norm, if there exists a family of finite, mutually disjoint sets, $\{ F_j \}_{j=1}^N$, such that the following hold:

(i) $\bigcup_{j} F_j = E$.

(ii) There exists a constant $K > 0$ such that if $\mu \in M(E)$ and μ_j denotes the restriction of μ to F_j, then, given any $N > 0$,

$$\sum_{j=1}^{N} \| \mu_j \|_{\infty} \leq K \sum_{j=1}^{N} \| \hat{\mu}_j \|_{\infty}.$$

$\{ F_j \}$ is said to be a sup-norm partition of E.

We note that every countable Helson (Sidon) set can be partitioned in the above sense. The following theorem is a generalization of a result by Katznelson and McGehee (cf. [3, Theorem 3.1]):
Theorem 1.2. Let G be a locally compact abelian group, and let $\Gamma = \hat{G}$. If $E \subset \Gamma$ is a non-Helson, countable and compact set with a finite number of accumulation points, then E contains a non-Helson set F, such that F can be partitioned with respect to the sup-norm.

The following lemma is a generalization of Lemma I of [8]:

Lemma 1.3. Given $\epsilon > 0$, and T, a compact symmetric neighborhood of 0 in G. Then, there exists Δ, a compact neighborhood of 0 in Γ, such that if $\mu \in M(\Delta)$, then $|\hat{\mu}(g_1) - \hat{\mu}(g_2)| < \epsilon \|\hat{\mu}\|_\infty$ whenever $g_1 - g_2 \in T$.

Proof. We first show that there is Δ, a compact neighborhood of 0 in Γ, such that

\begin{equation}
\|1 - (g, x)\|_{\Delta} < \epsilon \quad \text{whenever } g \in T.
\end{equation}

By a theorem of Wiener, if g is fixed, then there exists $\Delta = \Delta g$, a compact neighborhood of 0 in Γ, such that $\|1 - (g, x)\|_{\Delta g} < \epsilon$. If $\{g_1, \ldots, g_n\}$ is a finite subset of G, then, letting $\Delta = \bigcap_{i=1}^n \Delta g_i$, we obtain

\begin{equation}
\|1 - (g_i, x)\|_{\Delta} < \epsilon \quad \text{for } i = 1, \ldots, n.
\end{equation}

Let $g_1 \in T$ be fixed, and let Δg_1 be a compact neighborhood of 0 so that $\|1 - (g_1, x)\|_{\Delta g_1} < \epsilon$. Then, by the definition of $A(\Delta g_1)$, there exists $f \in L^1(G)$ such that $\hat{f}(x) = 1 - (g_1, x)$ for $x \in \Delta g_1$ and $\|f\|_1 < \epsilon$. Now, choose $k \in L^1(G)$ so that $k = 1$ on Δg_1 and $k = 0$ outside a compact set; let $h = k * \delta_{g_1}$ (denoted the pt. mass measure at g_1). Clearly, $\hat{h}(x) = (g_1, x)$ on Δg_1. Since translation is continuous in $L^1(G)$, there exists U, an open neighborhood of 0 in G, such that

\begin{equation}
\|b_{g_2 - g_1} - h\|_{L^1(G)} < \epsilon - \|f\|_1 \quad \text{whenever } g_2 - g_1 \in U.
\end{equation}

But, for $x \in \Delta g_1$, we have

\[(b_{g_2 - g_1} - h)(x) = (g_2 - g_1, x)\hat{h}(x) = (g_2 - g_1, x)(g_1, x) = (g_2, x). \]

If we now let $s = f - h_{g_2 - g_1} + b$, we obtain $\hat{s}(x) = 1 - (g_2, x)$ for $x \in \Delta g_1$, and by (3),

\[\|s\|_{L^1(G)} \leq \|f\|_1 + \|b_{g_2 - g_1} - h\|_1 < \epsilon. \]

Therefore, $\|\hat{s}\|_{A(\Delta g_1)} < \epsilon$, and we finally deduce that

\[\|1 - (g_2, x)\|_{A(\Delta g_1)} < \epsilon \quad \text{whenever } g_2 \in U + g_1. \]

Now, for each $g \in T$ we produce $U = U(g)$ as above. But, by the compactness of
T, there exist \(g_1, \ldots, g_n\) so that

\[
T \subset \bigcup_{i=1}^{n} (g_i + \mathcal{U}(g_i)).
\]

Let \(\Delta = \bigcap_{i=1}^{n} \Delta_{g_i}\), and, as in (2), we have \(\|1 - (g, x)\|_{A(\Delta)} < \epsilon\) for all \(g \in T\).

Having proved (1), we easily establish the conclusion of the lemma: If \(\mu \in M(\Delta)\) and \(g_2 - g_1 \in T\), then

\[
|\hat{\mu}(g_2) - \hat{\mu}(g_1)| \leq \|1 - (g_2 - g_1, x)\|_{A(\Delta)} \|\hat{\mu}\|_{\infty} \leq \epsilon \|\hat{\mu}\|_{\infty},
\]

and the lemma is proved. □

We proceed to establish generalizations of lemmas about finitely supported measures (cf. [4]).

Definition 1.4. A subset \(K\) of \(G\) is said to be relatively dense in \(G\) if finitely many translates of \(K\) cover \(G\).

Lemma 1.5. If \(\mathcal{U}\) is a symmetric neighborhood of 0 in \(\widehat{G}\), the Bohr compactification of \(G\), then \(\mathcal{U} \cap G\) is relatively dense in \(G\).

Proof. Claim. \(\bigcup_{g \in G} (g + \mathcal{U}) = \mathcal{G}\). For, if \(h \in \mathcal{G}\), then \(h + \mathcal{U}\) is a neighborhood of \(h\) in \(\mathcal{G}\). By the density of \(G\) in \(\mathcal{G}\), there exists \(g \in G\) such that \(g \in h + \mathcal{U}\). Therefore, by the symmetry of \(\mathcal{U}\), \(h \in g + \mathcal{U}\), and claim is proved.

Since \(\mathcal{G}\) is compact, we can find \(\{g_1, \ldots, g_N\}\) so that \(\bigcup_{i=1}^{N} (g_i + \mathcal{U}) = \mathcal{G}\). Therefore,

\[
\bigcup_{i=1}^{N} (g_i + (\mathcal{U} \cap G)) = G.
\] □

Lemma 1.6. Let \(F = \{x_1, \ldots, x_N\} \subset \Gamma\) (\(\widehat{G} = \Gamma\)), then \(b(F) \geq (1/N)^{\frac{1}{2}}\) (\(b(F) = \) Helson constant of \(F\)).

Proof. Suppose \(\mu \in M(F)\). Since \(F\) is a finite set, \(\mu \in C(\widehat{G})\). Therefore, by Plancherel's theorem,

\[
\|\hat{\mu}\|_{\infty} \geq \|\hat{\mu}\|_{L^2(\widehat{G})} = \left(\sum_{j=1}^{N} |\mu(\{x_j\})|^2 \right)^{\frac{1}{2}} \geq \left(\frac{1}{N^{\frac{1}{2}}} \right) \sum_{j=1}^{N} |\mu(\{x_j\})|. \quad \Box
\]

Lemma 1.7. Let \(F\) be a finite set in \(\Gamma\). Then, given \(\epsilon > 0\), there exists \(U\), a compact neighborhood of 0 in \(G\), such that if \(g \in G\), then every translate of \(U\) in \(G\) contains an element \(z\), so that

\[
|\hat{\mu}(z) - \hat{\mu}(g)| \leq \epsilon \|\hat{\mu}\|_{\infty} \quad \text{for all } \mu \in M(F).
\]
Proof. Let \(\mu \in M(F) \) be arbitrary. By Lemma 1.6, we have that

\[
|\hat{\mu}(g) - \hat{\mu}(z)| = \left| \sum_{j=1}^{N} \mu((x_j, g, x_j) - (z, x_j)) \right| \\
\leq N^{1/2} \|\hat{\mu}\|_{\infty} \sup_{1 \leq j \leq N} |1 - (g - z, x_j)|
\]

where \(N \) = number of elements of \(F \). But, \(V = \{ w : |1 - (w, x_j)| < \epsilon/N^{1/2}, j = 1, \ldots, N \} \) is a symmetric neighborhood of \(0 \) in \(\mathbb{G} \). Therefore, by Lemma 1.5, \(V \cap G \) is relatively dense; i.e., there exist \(g_1, \ldots, g_k \in G \) so that \(\bigcup_{i=1}^{k} (g_i + V \cap G) = G \). Now, take any compact neighborhood of \(0 \) in \(G \), say \(C \), and let \(U = \bigcup_{i=1}^{k} (g_i + C) \). It is easy to see that \(U \) satisfies the requirements of the lemma. \(\square \)

We are now ready to establish Theorem 1.2: Without loss of generality, we can assume that \(0 \in \Gamma \) is the only accumulation point of \(E \). Therefore, if \(U \) is any neighborhood of \(0 \) in \(\Gamma \), then \(U \cap E \) is a non-Helson set. We shall construct inductively a sup-norm partition, \(\{T_{ij}\}_{i=1}^{\infty} \), for a non-Helson subset of \(E \).

Let \(1/500 > \epsilon > 0 \) be given, and let \(\langle \epsilon_j \rangle \) be a sequence of real numbers such that

\[
2 \sum_{j=1}^{\infty} \epsilon_j < \epsilon, \quad \text{and} \quad \epsilon_j > 0.
\]

Let \(F_1 \) be any finite subset of \(E \) so that \(b(F_1) < \epsilon_1 \); suppose that \(k \geq 2 \) and that \(F_1, \ldots, F_{k-1}, \) finite subsets of \(E \), were chosen. For each \(j \leq k - 1 \), there exists \(U_j \), a compact neighborhood of \(0 \) in \(G \), such that if \(g \in G \), every translate of \(U_j \) in \(G \) contains an element \(z \) so that

\[
|\hat{\mu}(z) - \hat{\mu}(g)| \leq \epsilon_j \|\hat{\mu}\|_{\infty}, \quad \text{for all} \quad \mu \in M(F_j) \quad \text{(Lemma 1.7)}.
\]

By Lemma 1.3, there exists \(\Delta_k \), a compact neighborhood of \(0 \) in \(\Gamma \), such that if \(\mu \in M(\Delta_k) \) and \(u_1 - u_2 \in U_1 + \cdots + U_{k-1} \), then

\[
|\hat{\mu}(u_1) - \hat{\mu}(u_2)| \leq \epsilon_k \|\hat{\mu}\|_{\infty}.
\]

We now select \(F_k \), a finite subset of \(\Delta_k \cap E \setminus \{0\} \), such that \(F_k \cap F_j = \emptyset \) for all \(j \leq k - 1 \), and \(b(F_k) < \epsilon_k \). Having completely described our selection process, we shall now prove that if \(\mu_j \in M(F_j) \), \(1 \leq j \leq k \), then

\[
\left(\frac{1}{6} - \epsilon \right) \sum_{j=1}^{k} \|\hat{\mu}_j\|_{\infty} \leq \left\| \sum_{j=1}^{k} \hat{\mu}_j \right\|_{\infty}.
\]

Claim. The range of \(\{\hat{\mu}_j\} \) is \((\epsilon \sum_{j=1}^{k} \|\hat{\mu}_j\|_{\infty}) \)-dense in range of \(\hat{\mu}_1 + \cdots + \text{range of} \ \hat{\mu}_k \). Consider \(\sum_{j=1}^{k} \hat{\mu}_j (z_j) \), where \(z_1, \ldots, z_k \) are arbitrary elements in \(G \).
Let $y_k = z_k$, and assume that y_k, \ldots, y_{j+1} were picked for $0 < j \leq k - 1$. We select y_j so that

$$y_j - y_{j+1} \in U_j \quad \text{and} \quad |\hat{\mu}_j(y_j) - \hat{\mu}_j(z_j)| \leq \epsilon_j \|\hat{\mu}\|_{\infty}.$$

(The choice is possible by (1).) Having thus chosen y_1, \ldots, y_k, we have for $1 < j \leq k$,

$$y_1 - y_j = (y_1 - y_2) + \cdots + (y_{j-1} - y_j) \in U_1 + \cdots + U_{j-1}.$$

Recalling that $\mu_j \in M(\Delta_j)$, we obtain by (2)

$$|\hat{\mu}_j(y_1) - \hat{\mu}_j(z_j)| \leq \epsilon_j \|\hat{\mu}_j\|_{\infty}.$$

Combining (3) and (4), we have

$$|\hat{\mu}_j(y_1) - \hat{\mu}_j(z_j)| \leq 2\epsilon_j \|\hat{\mu}_j\|_{\infty}.$$

Finally,

$$\left| \sum_{j=1}^{k} \hat{\mu}_j(y_1) - \sum_{j=1}^{k} \hat{\mu}_j(z_j) \right| \leq \epsilon \sum_{j=1}^{k} \|\hat{\mu}_j\|_{\infty},$$

and the claim is proved.

For each j, $\int_{C} \hat{\mu}_j(x) dx = 0$, since $\mu_j(010) = 0$. Therefore, $\text{Re} \hat{\mu}_j$ and $\text{Im} \hat{\mu}_j$ must both assume positive and negative values. It then easily follows that there exist $g_1, \ldots, g_k \in G$ so that

$$\left| \sum_{j=1}^{k} \hat{\mu}_j(g_j) \right| \geq \frac{1}{\delta} \sum_{j=1}^{k} \|\hat{\mu}_j\|_{\infty}.$$

(*) now follows from (5) and (6). Since $b(F_k) \to 0$ as $k \to \infty$, $F = \bigcup_{k=1}^{\infty} F_k \subset E$ is non-Helson, and the theorem is proved. \qed

We note that the above technique of producing sup-norm partitions of non-Helson subsets of countable sets in compact groups cannot be applied in the obvious way to subsets of discrete groups. For example, if E is any subset of \mathbb{Z}, and $\epsilon > 0$, $\delta > 0$ are given, we cannot conclude that there exists K, a sufficiently large integer, for which all $\mu \in M(E \setminus [-K, K])$ are so that $|\hat{\mu}(t_1) - \hat{\mu}(t_2)| < \epsilon \|\hat{\mu}\|_{\infty}$ whenever $|t_1 - t_2| < \delta$.

2. Sup-norm additivity in discrete abelian groups.

\textbf{Theorem 2.1.} Let Γ be an infinite discrete abelian group, and let $E \subset \Gamma$ be non-Sidon. Then, there exists $F \subset E$ such that F can be partitioned with respect to the sup-norm, and F is a non-Sidon set.

\textbf{Remark.} It is clear that $E \subset \Gamma$ is a Sidon set if and only if every countable subset of E is a Sidon set. Therefore, we may assume without loss of generality
that E is countable, and hence that Γ is countable.

Since Γ is countable, $\hat{\Gamma} = \hat{G}$ is a compact metrizable group (cf. [7, 2.2.6]), and therefore, there exists D, a countable, dense subgroup of G. Consider D as a discrete abelian group, and let $\phi: \Gamma \rightarrow \hat{D}$ be the natural injective map:

$$\phi(\gamma) = (\gamma, d)$$

for $\gamma \in D$ and $d \in D$. We shall say that $F \subseteq \hat{D}$ is a Sidon set if F is a Sidon set in $(\hat{D})_d$, \hat{D} discretized.

Lemma 2.2. Let Γ, ϕ, D be as above. Then, $E \subseteq \Gamma$ is Sidon if and only if $\phi(E)$ is Sidon. Furthermore, $b(E) = b(\phi(E))$.

Proof. To prove the lemma it suffices to show that if $\{a_i\}_{i=1}^n$ is any finite set of complex numbers, then

$$\sup_{x \in G} \left| \sum_{i=1}^n a_i (\gamma_i, x) \right| = \sup_{y \in D} \left| \sum_{i=1}^n a_i (\phi(\gamma_i), y) \right|$$

where $\gamma_i \in E$, $i = 1, \ldots, n$, and $\hat{D} = (\hat{D})_d$, the Bohr compactification of D.

Since D is dense in \hat{D}, we have

$$\sup_{y \in \hat{D}} \left| \sum_{i=1}^n a_i (\phi(\gamma_i), y) \right| = \sup_{x \in \hat{D}} \left| \sum_{i=1}^n a_i (\phi(\gamma_i), x) \right|.$$

But D was chosen to be dense in \hat{D}, and hence it follows from the definition of ϕ that

$$\sup_{x \in \hat{D}} \left| \sum_{i=1}^n a_i (\phi(\gamma_i), x) \right| = \sup_{x \in D} \left| \sum_{i=1}^n a_i (\gamma_i, x) \right|.$$

(1) now follows, and lemma is proved. \square

Lemma 2.3. Let $\{\gamma_i\}_{i=1}^\infty = E \subseteq \Gamma$ be a non-Sidon set. Let ϕ be as in Lemma 2.2. Then, there exists $\{\gamma_{i_k}\}_{k=1}^\infty = F \subseteq E$, F non-Sidon, and $\phi(F)$ (closure in \hat{D}) is a countable set with one accumulation point.

Proof. First, we claim that there exists $x_0 \in \phi(E)$ such that if U is any open set containing x_0, then $\phi^{-1}(U) \cap E$ is a non-Sidon set. Suppose this were not so. Then, for each $x \in \phi(E)$ there exists an open set, U_x, so that $x \in U_x$, and $\phi^{-1}(U_x) \cap E$ is a Sidon set. By the compactness of $\phi(E)$, there exist $x_1, \ldots, x_n \in \phi(E)$, so that $\bigcup_{i=1}^n U_{x_i} \supset \phi(E)$. But, $E = \bigcup_{i=1}^n \phi^{-1}(U_{x_i}) \cap E$ is a Sidon set by Drury's theorem (cf. [1]).

Now let $\{V_n\}_{n=1}^\infty$ be a family of open sets so that $V_n \supsetneq V_{n+1}$ and $\bigcap_{n=1}^\infty V_n = \{x_0\}$. Let $F_1 \subseteq \phi^{-1}(V_1) \cap E$ be any finite set. We proceed inductively to select $F_n \subseteq \phi^{-1}(V_n) \cap E$, such that F_n is finite, Sidon constant of $F_n < 1/n$, and $F_n \cap F_j = \emptyset$ for $j < n$. Let $F = \bigcup_{n=1}^\infty F_n$. The conclusion of the lemma easily follows. \square
We are now ready to prove Theorem 2.1: By the preceding lemma, produce $E' \subset E$ such that E' is a non-Sidon set, and $\phi(E')$ is a countable set with one limit point. By Theorem 1.2, find $S \subset \phi(E')$ so that S is non-Helson (therefore, also non-Sidon) such that S can be partitioned with respect to the sup-norm. But,

$$\sup_{x \in G} \left| \sum_{i=1}^{n} a_i(y_i, x) \right| = \sup_{y \in D} \left| \sum_{i=1}^{n} a_i(\phi(y)_i, y) \right|$$

(see proof of Lemma 2.2), and it easily follows that $F = \phi^{-1}(S) \subset E$ can be partitioned with respect to the sup-norm. In fact, the inverse image under ϕ of the partition for S is a partition for F.

Corollary 2.4. Let Γ be an infinite discrete abelian group, and let $E \subset \Gamma$ be non-Sidon. Then, there exists $F \subset E$ so that F is non-Sidon, and F is an R-set.

Proof. Let $F \subset E$ be non-Sidon, so that F can be partitioned with respect to the sup-norm via $\{F_n\}$. For each N, $k_N \in L^1(G)$ is chosen so that $\|k_N\|_1 \leq 2$, \hat{k}_N has compact support, and $\hat{k}_N(y) = 1$ whenever $y \in \bigcup_{n=1}^{N} F_n$. Suppose $f \in L^\infty(G)$. Given any N, and letting $f_n = \sum_{y \in F_n} \hat{f}(y)(y, \cdot)$, we have that

$$\sum_{n=1}^{N} \|f_n\|_\infty = \sum_{n=1}^{N} \|k_N \ast f \|_\infty \leq C \|k_N \ast f \|_\infty \leq 2C \|f\|_\infty.$$

Since N is arbitrary, $\sum_{n=1}^{\infty} \|f_n\|_\infty < \infty$, and it follows that $f \in C_F(G)$. \(\square\)

Remark. When $\Gamma = \mathbb{Z}$, the mapping ϕ as defined in the remark preceding Lemma 2.2 can be realized as follows: Let α be a given irrational number in T. Let $\phi_{\alpha} = \phi$ be the map from \mathbb{Z} into T so that $\phi(n) = n\alpha$ mod 2π. As in Lemma 2.3, if $E \subset \mathbb{Z}$ is a non-Sidon set, then there exists $x_0 \in \phi(E)^-$ (where closure is taken in the usual topology of T) such that if U is any neighborhood of x_0, then $\phi^{-1}(U) \cap E$ is non-Sidon. We then proceed, as in Theorem 2.1 to construct $F \subset E$ non-Sidon, so that F can be partitioned with respect to the sup-norm. It seems natural to ask whether the above technique of "wrapping" subsets of integers in the circle group can be used to explore other structural properties of \mathbb{Z} by investigating their analogues on T.

It is clear that not every closed subset of T can be realized in the form of $\{n_{j_{\alpha}}\}^\infty_{j=1}$, where $\{n_{j}\}^\infty_{j=1} \subset \mathbb{Z}$, and α is an irrational number (e.g., closed independent sets in T). It is an open question whether whenever $E \subset \mathbb{Z}$ is Sidon, \overline{E} is a Helson set in $\overline{\mathbb{Z}}$ (\overline{E} is closure of E in the Bohr compactification of \mathbb{Z}). It turns out that when we "close" E in T, we are in a somewhat less complicated situation than the one where we form \overline{E} in \mathbb{Z}. If α is a fixed irrational number, then there exist Sidon sets, $\{n_{j}\}^\infty_{j=1} \subset \mathbb{Z}$, so that $\{n_{j}\}^\infty_{j=1} \subset T$: Arrange the rationals in T in a sequence, $\{r_{j}\}^\infty_{j=1}$ in such a way that every rational occurs infinitely many times in
the arrangement. Now suppose n_1, \ldots, n_J were picked for $J > 1$. It is clear that
$E_J = \{an: n > 3n_J\}$ is dense in T. Select $n_{j+1} > 3n_J$ so that $\|an_{j+1} - r_{j+1}\| < 1/J$. It is now clear that $\{an_j\}_{j=1}^\infty$ is dense in T. Going in the other direction, we produce a Sidon set, $E \subset \mathbb{Z}$, so that $\{aE\}^\omega = T$ for almost all a in T: Let $S = \{(\epsilon_1, \ldots, \epsilon_N): N \in \mathbb{Z}, \epsilon_i = 0, 1\}$. Fix $\gamma \in S$, and set $F_\gamma = \{a \subset T: \gamma \text{ does not occur anywhere in the binary expansion of } a\}$. It is easy to check that $m(F_\gamma) = 0$, and hence $m(\bigcup_{\gamma \in S} F_\gamma) = 0$. But if we let $E = \{2j\}_{j=1}^\infty$, then for all $a \in \bigcup_{\gamma \in S} F_\gamma$, $(aE)^\omega = T$.

3. Open questions. 1. Let $U(T) = \{f \in C(T): \hat{S}_n(f) = \Sigma_{-n}^n \hat{f}(n)e^{int} \text{ converge uniformly to } f\}$. Figà-Talamanca constructed in [2] a non-Sidon set $E \subset \mathbb{Z}$ such that $U_E(T) = C_E(T)$. Therefore, by Corollary 2.4 we can produce a non-Sidon set such that $L^\infty_E(T) = U_E(T)$. In fact, our methods show that every non-Sidon set $E \subset \mathbb{Z}$ contains a non-Sidon set F for which there exists $\langle n_k \rangle$ such that $S_{n_k}f$ converge uniformly to f, for all $f \in L^\infty_E(T)$. Given a non-Sidon set $E \subset \mathbb{Z}$, does there exist $F \subset E$, F non-Sidon, and $U_F(T) = L^\infty_F(T)$?

2. We note that $L^\infty_E(G) = C_E(G)$ if and only if $L^\infty_E(G)$ is separable. Can an R-set $E \subset \mathbb{Z}$ be constructed so that E cannot be partitioned with respect to the sup-norm?

I would like to thank Professor O. C. McGehee, my adviser, and Professor H. P. Rosenthal for their patient guidance and good counsel. Also, I thank Professors S. Ebenstein and M. Zippin for teaching me much of the little mathematics that I know.

REFERENCES

3. Y. Katznelson and O. C. McGehee, Measures and pseudomeasures on compact subsets of the line, Math. Scand. 23 (1968), 57–68. MR 40 #4688.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CONNECTICUT, STORRS, CONNECTICUT 06268

Current address: Istituto di Matematica, Università di Genova, Genova, Italy