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ON TRIGONOMETRIC SERIES ASSOCIATED WITH
SEPARABLE, TRANSLATION INVARIANT SUBSPACES OF L*(G)(})

BY

RON C. BLEI

ABSTRACT. G denotes a compact abelian group, and T denotes its dual.
Our main result is that every non-Sidon set E C T’ contains a non-Sidon set F
such th:t L;;(G) = EBII ::-ICFi (G), where the Fl.’s are finite, mutually disjoint,
and U“l F.=F.
=17

0. Introduction. Let G be a locally compact abelian group with Haar mea-
sure dx, and let I" denote its dual with Haar measure dy. A(G) denotes the Gel-
fand representation of the convolution algebra LX) = LY, dy). AG) is a
dense subspace of CO(G), the Banach algebra of all continuous functions on G
which vanish at infinity. M(G) denotes the convolution algebra of all complex
valued finite regular measures on G. If p € M(G), then the Fourier-Stieltjes trans-

form of p is the uniformly continuous function on I defined by

i) = [ G - Ydut), yel.

We let G, denote the abelian group G endowed with the discrete topology.
(Gd) , the dual_group of q_d’ is denoted by I', the Bohr compactification of I'.

I is dense on I', and C(I') can be naturally identified with the almost periodic
functions on I'.

Let ECT and let KE)={f € A(): /=0 on E}. We set A(E) = A()/I(E),
where the quotient is the usual Banach algebra quotient. An element of A(E) may
be viewed as the restriction to E of a function in A(I). Clearly, A(E) C CO(E);
A(E) is dense in Co(E), and ”g”A(E) > lgll,, for all g € A(E). When A(E) = Co(E),
and I' is a nondiscrete group, we say that E is a Helson set; when I' is a dis-
crete group, we say that E is a Sidon set (cf. [7, Chapter 5]). We define the Hel-

son (Sidon) constant of a set E C I to be

BE) = inf U/ | oo/ Il 4 gy | € A, [ £ 0.
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Clearly, E is a Helson (Sidon) set if and only if A(E) > 0.
When ECI', I' a discrete group, and B(G) is any subspace of LY(G), we set

B(G) =1/ € B(G): =0 outside E}.

We consider the following inclusion,
L2(G) 2 CL(6) 24 ,(G).

It is easy to see that L;(G) = AE(G) if and only if E is a Sidon set. Also, if
Cg(G) = AL(G), then E is a Sidon set.

Non-Sidon sets E C Z such that L;(T) = CE(T) (we refer to such sets as
R-sets) were first constructed by Rosenthal [5], who subsequently conjectured
that every non-Sidon E C Z contained a non-Sidon set F such that LE(T) = C(T).
In §2 we prove the above conjecture where E is any non-Sidon set in any discrete
abelian group (Corollary 2.4). In what follows below, we search for non-Sidon sets
E CT' for which there exists a partition, {F].};l, so that the F].’s are finite,
F.nF =g if ifj, UZ, F,=E and Cg(G) is isomorphic to @172, Cp ()
(see Definition 1.1). Not every non-Sidon set can be so partitioned. Theorem 2.1
states that every non-Sidon set E CI" contains a non-Sidon set F, so that F can
be partitioned in the above sense. To prove 2.1, we first generalize a result of
Katznelson and McGehee, and prove that every countable and closed non-Helson
subset of a compact abelian group contains a non-Helson set which can be parti-
tioned (Theorem 1.2). We then, using Drury’s theorem (cf. [1]), reduce the problem
of constructing partitions in discrete abelian groups to that of constructing parti-

tions in compact abelian groups. Having established 2.1, we obtain Corollary 2.4.

1. Sup-norm additivity in LCA groups.

Definition 1.1. Let G be a locally compact abelian group, and let E be a
countable subset of G. E is said to be partitioned with respect to the supremum
norm, if there exists a family of finite, mutually disjoint sets, {Fj}, such that the
following hold:

(1) U]. F,.= E.

(ii) There exists a constant K > 0 such that if p € M(E) and > denotes the
restriction of p to F]., then, given any N > 0,

N

> Il < K

i=1

N

2 i

=1

(o9

{F}.} is said to be a sup-norm partition of E.

We note that every countable Helson (Sidon) set can be partitioned in the
above sense. The following theorem is a generalization of a result by Katznelson
and McGehee (cf. (3, Theorem 3.1]):
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Theorem 1.2. Let G be a locally compact abelian group, and let T = G. If
E CT is a non-Helson, countable and compact set with a finite number of accumu-
lation points, then E contains a non-Helson set F, such that F can be partitioned

with respect to the sup-norm.
The following lemma is a generalization of Lemma I of [8]:

Lemma 1.3. Given ¢ >0, and T, a compact symmetric neighborbood of 0 in G.
Then, there exists A, a compact neighborbood of 0 in I', such that if p € M),
then Iﬁ(gl) - (g )| < ellgll,, whenever g, —g, € T.

Proof. We first show that there is A, a compact neighborhood of 0 in I,
such that
(1) 1 - (g, x)]lA(A) <e¢ whenever g € T.

By a theorem of Wiener, if g is fixed, then there exists A = Ag, a compact neigh-
borhood of 0 in I', such that |1 - (g, x)IIA(Ag) <e. If {g,,- -, g} is a finite
subset of G, then, letting A = n;’q A, ., we obtain

1
(2) ||1—(gi,x)||A(A)<£ for i=1,...,m

Let g, €T be fixed, and let Agl be a compact neighborhood of 0 so that

It - (g, x)IIA(A y < €. Then, by the definition of A(A81)’ there exists [ € L1(G)
~, g

such that [(x) =1- (g, x) for x eAgl and ||/ ||, <e. Now, choose k € LYG)

sothat £=1 on Agl and kE =0 outside a compact set; let b = k * 331 (3gl de-

noted the pt. mass measure at g,). Clearly, h(x) = (g, %) on Agl' Since transla-

tion is continuous in L!(G), there exists U, an open neighborhood of 0 in G,

such that

(3) |5 bl

But, for x € Agl we have

(b 2_gl)“(x) = (g, —gp Mh) = (g, — ;s ¥ gy %) = (g, %),

- <e€-— whene - e U.
g,-¢) L) "/"L‘(G) never ;=&

g

If we now let s = f — bgz'gl + b, we obtain $(x) =1 - (g,, x) for x € Agl, and
by (3),

Ils < + ||/ -b|, <e.

ol 1, S W+ Iy g = ol

Therefore, |l§lIA(A y <6 and we finally deduce that
&1
- (32' x)"A(Ag y <€ whenever g, € U+ g,
1

Now, for each g € T we produce U= (U(g) as above. But, by the compactness of
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T, there exist {g,, -, g } so that
(4) TCcy @+ g ,)-
i=1

Let A=, Ag , and, as in (2), we have |1 - (g, x)”A(A) <eforall geT.

1
Having proved (1), we easily establish the conclusion of the lemma: If p € M(A)
and g, — g, €T, then

il»f(gz) - ﬁ(gl)l <|a- (82 — 8y x), p)|
<t -Gy = 8y PMaayille < ellitl

and the lemma is proved. O

We proceed to establish generalizations of lemmas about finitely supported
measures (cf. [4]).

Definition 1.4. A subset K of G is said to be relatively dense in G if

finitely many translates of K cover G.

Lemma 1.5. If U is a symmetric neighborbood of 0 in G, the Bobr compacti-
fication of G, then UN G is relatively dense in G.

Proc_)f. Claim. UgEG g+U)= § For, if b 66, then b + U is a neighborhood
of b in G. By the density of G in G, there exists g € G such that g€ b + U.
Therefore, by the symmetry of U, b € g + U, and claim is proved.

Since G is compact, we can find {g,»- > gy} so that U?Ll (g; +U) = G.

Therefore,

N
Uk +WUne)=6. o
i=1

Lemma 1.6. Let F =ix,-.-,x\iCT (G =T), then b(F) > (1/N)% (b(F) =

Helson constant of F).

Proof. Suppose u € M(F). Since F is a finite set, p € C(G). Therefore, by

Plancherel’s theorem,

N %
il > e = ({x.D)?
II#IIw_II#IILz(C) <]§ AR

1 N
> () Z sl
i=1

Lemma 1.7. Let F be a finite set in I'. Then, given ¢ > 0, there exists U,
a compact neighborhood of 0 in G, such that if g € G, then every translate of U

in G contains an element z, so that
16@) - f @] < ellillg for all u € MP).
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Proof. Let p € M(F) be arbitrary. By Lemma 1.6, we have that

N
5@©) - )| = |3 ulix;D (e, %)) - (2 x)

j=1

<NV, sup (1 (g2 %))
1<j<N

where N = number of elements of F. Eut, V={w: |1 - (v, xj)| <e¢/N%,j=1,-,N}
is a symmetric neighborhood of 0 in G. Therefore, by Lemma 1.5, VNG is rela-
tively dense; i.e., there exist g,,---, g, € G so that Uf=1 (gl. +VNG)=G. Now,
take any compact neighborhood of 0 in G, say C, and let U = U?gl (gz. +C). It is
easy to see that U satisfies the requirements of the lemma. O

We are now ready to establish Theorem 1.2: Without loss of generality, we can
assume that 0 € I" is the only accumulation point of E. Therefore, if U is any
neighborhood of 0 in I', then UNE is a non-Helson set. We shall construct induc-
tivety a sup-norm partition, {sz;il’ for a non-Helson subset of E.

Let 1/500 > ¢ > 0 be given, and let (e].) be a sequence of real numbers such
that

22€j<€, andel.>0.
i=1
Let F, be any finite subset of E so that h(Fl) < ¢,; suppose that k> 2 and that
FooonFy,
U’., a compact neighborthood of 0 in G, such that if g € G, every translate of U’.

finite subsets of E, were chosen. For each j< k - 1, there exists

in G contains an element z so that
M FE) - E©)] < 6 i ]on
for all p e M(Fj) (Lemma 1.7).

By Lemma 1.3, there exists A, a compact neighborhood of 0 in I', such that
if peMQA,) and u) —u, €U, +---+U,_,, then

@ 1) = 3a)] < 1 ]

We now select F, a finite subset of Akm E\fOi, such that F, N Fj = ¢ for all
ij<k-1, and b(Fk) <'¢,. Having completely described our selection process, we
shall now prove that if B € M(F].), 1< j<k, then

1 (z2)

k
(*) ((; - >,Z1 I!ujllws'

Claim. The range of (Efgl ;L].)A is (e 2;;1 Ilﬁ’.”w)-dense in range of ﬁl + e

+ range of ﬁk. Consider 2¢=1 [i]. (z’.), where z,,--+, 2, are arbitrary elements in G.

(o]
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Let y, = z,, and assume that Yproo 0 Y4y Were picked for 0<j<k-1. We

select y; so that

3) y.—

i T Yia € Ui and |/I] (Yj) = ﬂj(z,‘)l <€ ”ﬁ"w

(The choice is possible by (1).) Having thus chosen Yyttt Yy We have for
1<j<k,

Yy —y].:(yl —y2)+...+(y],_l —y].) €Ul +---+U].__1.
Recalling that p; € M(AJ.), we obtain by (2)
“4) |ﬂ] ()'1) - ﬁj()’j)l <€ “l:]"oo
Combining (3) and (4), we have

7,00 - )] <2 il
Finally,
ik k

(5) lZ l"]‘(yl) - Z y].(z].)

j=1 j=1

k
<e XN
=1

and the claim is proved.
For each j, [ fi.(x)dx =0, since p;(10}) = 0. Therefore, Re £, and Im [,
must both assume positive and negative values. It then easily follows that there

exist g,,---, g, €G so that

(6)

k
2 i)
j=1

(*) now follows from (5) and (6). Since b(Fk) — 0 as kK — o, F = U::l F,CE

is non-Helson, and the theorem is proved. O

1 k
> Z Il
ij=

We note that the above technique of producing sup-norm partitions of non-Hel-
son subsets of countable sets in compact groups cannot be applied in the obvious
way to subsets of discrete groups. For example, if E is any subset of Z, and
€>0, 6 >0 are given, we cannot conclude that there exists K, a sufficiently large
integer, for which all p € M(E\[-K, K]) are so that |ﬁ(t»l) - fi(t2)| <e|pall,, when-
ever ltl—12|<8. .

2. Sup-norm additivity in discrete abelian groups.

Theorem 2.1. Let I" be an infinite discrete abelian group, and let E C 1" be
non-Sidon. Then, there exists F CE such that F can be partitioned with respect

to the sup-norm, and F is a non-Sidon set.

Remark. It is clear that E CI" is a Sidon set if and only if every countable

subset of E is a Sidon set. Therefore, we may assume without loss of generality
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that E is countable, and hence that I' is countable.

Since I' is countable, I' = G is a compact metrizable group (cf. [7, 2.2.6]),
and therefore, there exists D, a countable, dense subgroup of G. Consider D as
a discrete abelian group, and let ¢: I' — D be the natural injective map:

(¢ 4), d)=(y,d) for yeD and d €D. We shall say that F C D is a Sidon set if
F is a Sidon set in (IS)d, D discretized.

Lemma 2.2. Let I', ¢, D be as above. Then, E CI" is Sidon if and only if
&(E) is Sidon. Furthermore, h(E) = h(¢(E)).

Proof. To prove the lemma it suffices to show that if {aiiz.’:l is any finite
set of complex numbers, then

n

> aflgly,), y)

i=1

2 2y %)

i=1

(1) sup
xe€G

= Ssup
yGD

where Yi € E, i=1,---,n,and D= (5);, the Bohr compactification of D.
Since D is dense in D, we have

n

> a,(gly,), %)

i=1

sup |3 4,y ), »)

y€D li=1

= sup
x€D

But D was chosen to be dense in G, and hence it follows from the definition of
¢ that

n

3 a (B, ¥)

i=1

n

> a,(y,,x)

i=1

.

sup
x €D

= sup
x€D

(1) now follows, and lemma is proved. O

Lemma 2.3. Let {yi}:‘;l =ECTI be a non-Sidon set. Let ¢ be as in Lemma
2.2. Then, there exists {yik}:=1 =F CE, F non-Sidon, and ¢(F) (closure in D)

is a countable set with one accumulation point.

Proof. First, we claim that there exists x 6%&?—) such that if U is any
open set containing x, then ¢~ Y(U) NE is a non-Sidon set. Suppose this were
not so. Then, for each x € ¢(E) there exists an open set, U,, sothat x € U,
and ¢~ (U )NE is a Sidon set. By the compactness of &(E), there exist
x50y % € (E), so that U7, Uy, D$(E). But, E = U7, ¢~ (U, ) NE isa
Sidon set by Drury’s theorem (cf. [1]).

Now let {V_1*_  be a family of open sets so that V 2V ., and n-,v,
= {xol- Let F, C - I(Vl) NE be any finite set. We proceed inductively to select
F C qb'l(Vn)ﬁ E, such that F_ is finite, Sidon constant of F < 1/n, and F. N
F,. =g for j<n. Let F= U:=1 F . The conclusion of the lemma easily follows. O
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We are now ready to prove Theorem 2.1: By the preceding lemma, produce
E' CE such that E' is a non-Sidon set, and ¢(E’) is a countable set with one
limit point. By Theorem 1.2, find S C ¢(E’) so that S is non-Helson (therefore,

also non-Sidon) such that S can be partitioned with respect to the sup-norm. But,

n

Y ey %)

izl

n

|
>, (ély)), y)\

i=1

sup
x€G

= sup
yED

(see proof of Lemma 2.2), and it easily follows that F = ¢~ 1(§) C E can be parti-
tioned with respect to the sup-norm. In fact, the inverse image under ¢ of the

partition for S is a partition for F.

Corollary 2.4. Let T" be an infinite discrete abelian group, and let E CI' be
non-Sidon. Then, there exists F CE so that F is non-Sidon, and F is an R-set.

Proof. Let F C E be non-Sidon, so that F can be partitioned with respect to
the sup-norm via {F }. For each N, ky €L 1(G) is chosen so that “kNHI <2,
k has compact support, and E (y) = 1 whenever y € U  F,- Suppose feL (G).
leen any N, and letting f = ,yeF"/(y) (y, ), we have that

N N
2 W le=2 My * ) Nl < Cllky * /1l < 2CN7 | -
n=1 n=1

Since N is arbitrary, 2:;1 ||/ﬂHoo < o0, and it follows that [ € CF(G). O

Remark. When I" = Z, the mapping ¢ as defined in the remark preceding
Lemma 2.2 can be realized as follows: Let a be a given irrational number in T.
Let ¢, =¢ be the map from Z into T so that ¢(n) = na mod 27. As in Lemma
2.3, if ECZ is a non-Sidon set, then there exists x, € $(E)~ (where closure is
taken in the usual topology of T) such that if U is any neighborhood of x, then
é~1(U) NE is non-Sidon. We then proceed, as in Theorem 2.1 to construct F C E
non-Sidon, so that F can be partitioned with respect to the sup-norm. It seems
natural to ask whether the above technique of ‘‘wrapping’’ subsets of integers in
the circle group can be used to explore other structural properties of Z by inves-
tigating their analogues on T.

It is clear that not every closed subset of T can be realized in the form of
{n .a}~, where {71 }of. CZ, and a is an irrational number (e.g., closed independent
sets in T). It is an open question whether whenever E C Z is Sidon, E is a Hel-
son set in (E = closure of E in the Bohr compactification of 7). It turns out
that when we ‘‘close’” E in T, we are in a somewhat less complicated situation
than the one where we form E in Z. If a is a fixed irrational number, then there
exist Sidon sets, {n].} C Z, so that {n].a}' = T: Arrange the rationals in T in a se-

quence, {rj};:l in such a way that every rational occurs infinitely many times in
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the arrangement. Now suppose n,,- -, n; were picked for | > 1. It is clear that
E;={an: n>3n;} is dense in T. Select n;,, > 3n; so that |an;,, ~r , [|<1/].
It is now clear that {anji;?‘-l is dense in T. Going in the other direction, we pro-
duce a Sidon set, E C Z, so that {aE}~™ = T for almost all a in T: Let S =
{(el,--- , eN): Nel, €, = 0, 1}. Fix y €S, and set F,y ={aCT: y does not occur
anywhere in the binary expansion of a}. It is easy to check that m(F,y) =0, and
hence m({J )= 0. But if we let E = {2/’ , then forall ae~ (., gF.,
(aE)~ =T.

yeSFy

3. Open questions. 1. Let U(T) = {f € C(T): SN = Zﬁnf(n)ei"‘ converge
uniformly to f}. Figa-Talamanca constructed in [2] a non-Sidon set E CZ such
that UE(T) = CE(T). Therefore, by Corollary 2.4 we can produce a non-Sidon set
such that L°E° (1) = UE(T). In fact, out methods show that every non-Sidon set
E CZ contains a non-Sidon set F for which there exists ("k> such that Snk(f)
converge uniformly to f, for all f€ L;: (T). Given a non-Sidon set E C Z, does there
exist F C E, F non-Sidon, and UF(T) = L;:(T)?

2. We note that L;(G) = CE(G) if and only if L°E°(G) is separable. Can an
R-set E CZ be constructed so that E cannot be partitioned with respect to the
sup-norm?
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fessors S. Ebenstein and M. Zippin for teaching me much of the little mathematics

that I know.

REFERENCES

1.S. W. Drury, Sur les ensembles de Sidon, C. R. Acad. Sci. Paris Sér. A-B 271
(1970), A162—-A163. MR 42 #6530.

2. A. Figa-Talamanca, 4n example in the theory of lacunary Fourier series, Boll. Un.
Mat. Ital. (4) 3 (1970), 375-378. MR 42 #762.

3. Y. Katznelson and O. C. McGehee, Measures and pseudomeasures on compact sub-
sets of the line, Math. Scand. 23 (1968), 57—68. MR 40 #4688.

4. 0. C. McGehee, Certain isomorphisms between quotients of a group algebra, Pacific
J. Math. 21 (1967), 133—-152. MR 36 #6880.

5. H. P. Rosenthal, On trigonometric series associated with weak* closed subspaces
of continuous functions, J. Math. Mech. 17 (1967), 485—490. MR 35 #7064.

6. W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-227.
MR 22 #6972.

7. ———, Fourier analysis on groups, Interscience Tracts in Pure and Appl. Math.,
no. 12, Interscience, New York, 1962. MR 27 #2808.

8. N. Th. Varopoulos, Sur les ensembles parfaits et les séries trigonométriques, C. R.
Acad. Sci. Paris 260 (1965), 3831-3834. MR 32 #322.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CONNECTICUT, STORRS, CONNECTICUT
06268

. . . . o N .
Current address: Istituto di Matematica, Universita di Genova, Genova, Italy



