$\Pi ^{0}_{1}$ classes and degrees of theories
HTML articles powered by AMS MathViewer
- by Carl G. Jockusch and Robert I. Soare PDF
- Trans. Amer. Math. Soc. 173 (1972), 33-56 Request permission
Abstract:
Using the methods of recursive function theory we derive several results about the degrees of unsolvability of members of certain $\Pi _1^0$ classes of functions (i.e. degrees of branches of certain recursive trees). As a special case we obtain information on the degrees of consistent extensions of axiomatizable theories, in particular effectively inseparable theories such as Peano arithmetic, ${\mathbf {P}}$. For example: THEOREM 1. If a degree ${\mathbf {a}}$ contains a complete extension of ${\mathbf {P}}$, then every countable partially ordered set can be embedded in the ordering of degrees $\leqslant {\mathbf {a}}$. (This strengthens a result of Scott and Tennenbaum that no such degree ${\mathbf {a}}$ is a minimal degree.) THEOREM 2. If ${\mathbf {T}}$ is an axiomatizable, essentially undecidable theory, and if $\{ {{\mathbf {a}}_n}\}$ is a countable sequence of nonzero degrees, then ${\mathbf {T}}$ has continuum many complete extensions whose degrees are pairwise incomparable and incomparable with each ${{\mathbf {a}}_n}$. THEOREM 3. There is a complete extension ${\mathbf {T}}$ of ${\mathbf {P}}$ such that no nonrecursive arithmetical set is definable in ${\mathbf {T}}$. THEOREM 4. There is an axiomatizable, essentially undecidable theory ${\mathbf {T}}$ such that any two distinct complete extensions of ${\mathbf {T}}$ are Turing incomparable. THEOREM 5. The set of degrees of consistent extensions of ${\mathbf {P}}$ is meager and has measure zero.References
- A. Ehrenfeucht, Separable theories, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 17–19. MR 131978
- William Feller, An introduction to probability theory and its applications. Vol. II, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR 0210154
- Richard Friedberg, A criterion for completeness of degrees of unsolvability, J. Symbolic Logic 22 (1957), 159–160. MR 98025, DOI 10.2307/2964177
- Harvey M. Friedman, Borel sets and hyperdegrees, J. Symbolic Logic 38 (1973), 405–409. MR 335248, DOI 10.2307/2273034
- William Hanf, Model-theoretic methods in the study of elementary logic, Theory of Models (Proc. 1963 Internat. Sympos. Berkeley), North-Holland, Amsterdam, 1965, pp. 132–145. MR 0210570
- Leon Henkin, The completeness of the first-order functional calculus, J. Symbolic Logic 14 (1949), 159–166. MR 33781, DOI 10.2307/2267044
- A. Janiczak, Undecidability of some simple formalized theories, Fund. Math. 40 (1953), 131–139. MR 60439, DOI 10.4064/fm-40-1-131-139
- Carl G. Jockusch Jr., Uniformly introreducible sets, J. Symbolic Logic 33 (1968), 521–536. MR 237330, DOI 10.2307/2271359
- C. G. Jockusch Jr. and T. G. McLaughlin, Countable retracing functions and $\Pi _{2}{}^{0}$ predicates, Pacific J. Math. 30 (1969), 67–93. MR 269508, DOI 10.2140/pjm.1969.30.67
- Carl G. Jockusch Jr. and Robert I. Soare, A minimal pair of $\Pi _{1}{}^{0}$ classes, J. Symbolic Logic 36 (1971), 66–78. MR 282834, DOI 10.2307/2271516
- Carl G. Jockusch Jr. and Robert I. Soare, Degrees of members of $\Pi ^{0}_{1}$ classes, Pacific J. Math. 40 (1972), 605–616. MR 309722, DOI 10.2140/pjm.1972.40.605
- Stephen Cole Kleene, Introduction to metamathematics, D. Van Nostrand Co., Inc., New York, N. Y., 1952. MR 0051790
- Webb Miller and D. A. Martin, The degrees of hyperimmune sets, Z. Math. Logik Grundlagen Math. 14 (1968), 159–166. MR 228341, DOI 10.1002/malq.19680140704
- Emil L. Post, Recursively enumerable sets of positive integers and their decision problems, Bull. Amer. Math. Soc. 50 (1944), 284–316. MR 10514, DOI 10.1090/S0002-9904-1944-08111-1
- Marian Boykan Pour-El and Saul Kripke, Deduction-preserving “recursive isomorphisms” between theories, Fund. Math. 61 (1967), 141–163. MR 252226, DOI 10.4064/fm-61-2-141-163
- H. G. Rice, Recursive and recursively enumerable orders, Trans. Amer. Math. Soc. 83 (1956), 277–300. MR 83454, DOI 10.1090/S0002-9947-1956-0083454-0
- Hartley Rogers Jr., Theory of recursive functions and effective computability, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1967. MR 0224462
- Gerald E. Sacks, Degrees of unsolvability, Princeton University Press, Princeton, N.J., 1963. MR 0186554
- Dana Scott, Algebras of sets binumerable in complete extensions of arithmetic, Proc. Sympos. Pure Math., Vol. V, American Mathematical Society, Providence, R.I., 1962, pp. 117–121. MR 0141595 D. Scott and S. Tennenbaum, On the degrees of complete extensions of arithmetic, Notices Amer. Math. Soc. 7 (1960), 242-243. Abstract #568-3.
- J. R. Shoenfield, The class of recursive functions, Proc. Amer. Math. Soc. 9 (1958), 690–692. MR 95780, DOI 10.1090/S0002-9939-1958-0095780-7
- J. R. Shoenfield, Degrees of models, J. Symbolic Logic 25 (1960), 233–237. MR 139525, DOI 10.2307/2964680
- J. R. Shoenfield, A theorem on minimal degrees, J. Symbolic Logic 31 (1966), 539–544. MR 205850, DOI 10.2307/2269688
- Robert I. Soare, Sets with no subset of higher degree, J. Symbolic Logic 34 (1969), 53–56. MR 263627, DOI 10.2307/2270981
- Alfred Tarski, Undecidable theories, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam, 1953. In collaboration with Andrzej Mostowski and Raphael M. Robinson. MR 0058532
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 173 (1972), 33-56
- MSC: Primary 02F30; Secondary 02F35, 02G05
- DOI: https://doi.org/10.1090/S0002-9947-1972-0316227-0
- MathSciNet review: 0316227