ON A VARIATION OF THE RAMSEY NUMBER

BY

GARY CHARTRAND(1) AND SEYMOUR SCHUSTER(2)

ABSTRACT. Let $c(m, n)$ be the least integer p such that, for any graph G of order p, either G has an m-cycle or its complement \overline{G} has an n-cycle. Values of $c(m, n)$ are established for $m, n \leq 6$ and general formulas are proved for $c(3, n), c(4, n),$ and $c(5, n)$.

Introduction. It is a well-known fact that in any gathering of six people, there are three people who are mutual acquaintances or three people who are mutual strangers. This statement has the graph-theoretic formulation that either a given graph of order 6 or its complement contains a triangle. It might further be mentioned that "6" is minimum with respect to this property.

The Ramsey number $r(m, n)$ may be considered a generalization of the above observation. For integers $m, n \geq 2$, the number $r(m, n)$ is defined as the smallest positive integer p such that given any graph G of order p, either G contains the complete subgraph K_m of order m or the complement \overline{G} of G contains K_n. Hence, the aforementioned fact states that $r(3, 3) = 6$. One may easily note that $r(m, n) = r(n, m)$ and that $r(2, n) = n$ for all $n \geq 2$.

It is a result due to Ramsey [3] that the number $r(m, n)$ exists for all $m, n \geq 2$. Despite the fact that a great deal of research has been done on Ramsey numbers, only six values $r(m, n)$ have been determined for $m, n \geq 3$ (see [1]); namely, $r(m, n)$ is known (for $m, n \geq 3$) only when $(m, n) = (3, 3), (3, 4), (3, 5), (3, 6), (3, 7), (4, 4)$.

If we denote an n-cycle (a cycle of length n) by C_n, the original problem may be stated as: Given a graph G of order 6, either G or \overline{G} contains a 3-cycle (triangle). This suggests a generalization different from that which leads to the Ramsey numbers. For $m, n \geq 3$, we define the number $c(m, n)$ to be the least positive integer p, such that for any graph G of order p, either G contains the m-cycle C_m or \overline{G} contains C_n. Of course, we have $c(3, 3) = 6$. The number $c(m, n)$ always exists since $c(m, n) \leq r(m, n)$. It is the object of this paper to determine the value of $c(m, n)$ for several pairs (m, n); in particular, $c(3, n), c(4, n)$, and $c(5, n)$ are determined for all $n \geq 3$. Before proceeding further, we present a few definitions and some additional notation. All terms not defined here may be found in [2].

Received by the editors May 17, 1971.

AMS (MOS) subject classifications (1970). Primary 05C35.

Key words and phrases. Graph, cycle, Ramsey number, complement.

(1) Research supported in part by the Office of Naval Research.

(2) Research supported by the National Science Foundation.
The complete bipartite graph $K(m, n)$, $m, n \geq 1$, is that graph G of order $m + n$, whose vertex set may be partitioned as $V_1 \cup V_2$ such that $|V_1| = m$, $|V_2| = n$ and $e = uv$ is an edge of G if and only if $u \in V_i$ and $v \in V_j$, $i \neq j$. For connected graphs G_1 and G_2, we define $G_1 \cup G_2$ to be the disconnected graph having the two components G_1 and G_2. Note that if $G = K(m, n)$, then $\overline{G} = K_m \cup K_n$.

The numbers $c(3, n)$. We have already mentioned that $c(3, 3)$ is the well-known Ramsey number $r(3, 3) = 6$. We consider $c(3, 4)$ next.

Theorem 1. $c(3, 4) = 7$.

Proof. Let $H = K(3, 3)$ so that $\overline{H} = K_3 \cup K_3$. The graph H contains no 3-cycle and its complement \overline{H} fails to contain a 4-cycle; thus, $c(3, 4) \geq 7$. To verify that $c(3, 4) = 7$, we let G be an arbitrary graph of order 7 and assume G contains no 3-cycle. We show that G contains a 4-cycle.

Since $c(3, 3) = 6$, either G or \overline{G} has a 3-cycle; hence, \overline{G} contains a 3-cycle, which we represent as $C: u_1, u_2, u_3, u_4$. (See Figure 1a, where the edges of \overline{G} are represented by dashed lines.) Denote the remaining vertices by v_1, v_2, v_3, v_4. If some v_i is joined in \overline{G} to more than one vertex of C, then \overline{G} contains a 4-cycle. We may assume, then, that each v_i is adjacent in G to at least two vertices of C. This implies that every two distinct v_i must be joined in G to a common vertex of C. (See Figure 1b, where the edges of G are represented by solid lines.) Because G contains no triangles, every two distinct v_i must be adjacent in \overline{G} (see Figure 1c) which implies that \overline{G} contains K_4 and hence C_4 as a subgraph.

We now proceed to the general situation.

Theorem 2. For $n \geq 4$, $c(3, n) = 2n - 1$.

Proof. First, we note that if $H = K(n - 1, n - 1)$ so that $\overline{H} = K_{n-1} \cup K_{n-1}$, then H contains no 3-cycles and \overline{H} contains no n-cycles. Thus, $c(3, n) \geq 2n - 1$. We prove that $c(3, n) = 2n - 1$, for all $n \geq 4$, by using induction on n.
By Theorem 1, $c(3, 4) = 7$. Assume that $c(3, n) = 2n - 1$ for some $n \geq 4$. It follows, therefore, that if F is any graph of order $2n - 1$, either F contains a 3-cycle or \overline{F} contains an n-cycle. We now show that $c(3, n + 1) = 2n + 1$. Let G be a graph of order $2n + 1$, and assume G has no 3-cycles. Because $c(3, n + 1) \geq 2n + 1$, it suffices to prove that \overline{G} contains an $(n + 1)$-cycle. Since, by the induction hypothesis, $c(3, n) = 2n - 1$, the graph \overline{G} contains an n-cycle, say $C: u_1, u_2, \ldots, u_n, u_1$. Designate the remaining vertices by v_1, v_2, \ldots, v_n, and v_{n+1}.

Suppose that some vertex u_i, $1 \leq i \leq n$, is adjacent in G to all vertices v_j, $j = 1, 2, \ldots, n + 1$. Since G contains no 3-cycles, every two distinct vertices v_j are adjacent in \overline{G}. However, this implies that \overline{G} contains K_{n+1} and therefore C_{n+1} as a subgraph. We henceforth assume that for $i = 1, 2, \ldots, n$, the vertex u_i is adjacent in \overline{G} to some v_j.

We now consider two cases.

Case 1. Suppose there exist two alternate vertices on C which are respectively joined in \overline{G} to two distinct v_j. Assume $u_1v_1, u_3v_3 \in E(\overline{G})$. If some vertex u_i is joined in \overline{G} to two consecutive vertices of C, then \overline{G} contains an $(n + 1)$-cycle. Otherwise we have $u_2v_1, u_2v_3 \in E(G)$, which implies that $v_1v_3 \in E(\overline{G})$. However, then \overline{G} contains the $(n + 1)$-cycle $u_1, v_1, v_3, u_3, u_4, \ldots, u_n, u_1$.

Case 2. Suppose no two alternate vertices on C are joined in \overline{G} to distinct vertices v_j. This implies that u_1 and u_3 are joined in \overline{G} to the same v_i, say v_1. Indeed, every u_i, with i odd, is joined in \overline{G} to v_1. If n is odd, then v_1 is joined in G to both u_1 and u_n which produces an $(n + 1)$-cycle in \overline{G}. Assume that n is even. It follows here that each u_i, with i even, is adjacent in \overline{G} to the same $v_i \neq v_1$, say v_2.

Each v_j, $3 \leq j \leq n + 1$, is necessarily joined in G to every vertex of C; otherwise, we revert back to Case 1. Since G contains no triangles, v_i and v_j, $3 \leq i < j \leq n + 1$, are adjacent in \overline{G}. For the same reason and because $v_1u_2, v_2u_1 \in E(G)$, all edges v_1u_1 and v_2u_1, $3 \leq i \leq n + 1$, belong to \overline{G}. Now $v_1, v_3, v_2, v_4, v_5, \ldots, v_{n+1}, v_1$ is a desired $(n + 1)$-cycle in \overline{G}.

The numbers $c(4, n)$. As $c(m, n) = c(n, m)$, it follows that $c(4, 3) = 7$ by Theorem 1. Thus we need only consider $c(4, n)$ for $n \geq 4$. Since the values of $c(4, 4)$ and $c(4, 5)$ do not follow the general formula which we present in this section, we must establish these numbers individually. We begin by doing this.

Theorem 3. $c(4, 4) = 6$.

Proof. Let $H = C_5$ so that $\overline{H} = C_5$. Since neither H nor \overline{H} contains a 4-cycle, $c(4, 4) \geq 6$. Let G be a graph of order 6, and assume neither G nor \overline{G} contains a 4-cycle. Because $c(3, 3) = 6$, either G or \overline{G} contains a triangle. Without loss of generality, we assume G contains the 3-cycle $C: u_1, u_2, u_3, u_1$. Denote the other vertices of G by $v_1, v_2,$ and v_3. No vertex v_i can be joined in G to more than one
vertex of C, for otherwise G contains a 4-cycle. Hence each v_i is adjacent in \overline{G} to at least two vertices of C. If there exist two v_i which are adjacent in \overline{G} to the same two vertices of C, then \overline{G} contains a 4-cycle. Hence, we suppose v_i is adjacent in \overline{G} to u_1 and u_2, v_2 is adjacent in \overline{G} to u_2 and u_3, and v_3 is adjacent in \overline{G} to u_1 and u_3; moreover, $v_1u_3, v_2u_1, v_3u_2 \in E(G)$. No two v_i are adjacent in G, for then G has a 4-cycle. This implies that $v_1v_2, v_1v_3, v_2v_3 \in E(\overline{G})$, but then v_1, u_2, v_2, v_3, v_1 is a 4-cycle in \overline{G} which produces a contradiction.

Theorem 4. $c(4, 5) = 7$.

Proof. Let $H = K_3 \cup K_3$ so that $\overline{H} = K(3, 3)$. The graph H has no 4-cycle and \overline{H} has no 5-cycle; thus, $c(4, 5) \geq 7$. Let G be a graph of order 7, and assume G has no 4-cycle. We prove that \overline{G} contains a 5-cycle.

Since $c(4, 4) = 6$ by Theorem 3, the graph \overline{G} contains a 4-cycle, say $C: u_1, u_2, u_3, u_4, u_5$. Let v_1, v_2, v_3 denote the other vertices. If any of $v_1, v_2,$ and v_3 is adjacent in \overline{G} to two consecutive vertices of C, then \overline{G} contains a 5-cycle. Suppose, then, that none of $v_1, v_2,$ and v_3 is adjacent in \overline{G} to consecutive vertices of C. Hence each v_i is joined in \overline{G} to opposite vertices of C. Necessarily, there exist two v_i, say v_1 and v_2, which are adjacent in \overline{G} to the same opposite vertices of C, say u_1 and u_2. The graph G therefore contains the 4-cycle $u_1, v_1, u_3, v_2, u_5, v_1$, which is contrary to hypothesis.

In order to determine a general formula for $c(4, n)$, we establish the number $c(4, 6)$.

Theorem 5. $c(4, 6) = 7$.

Proof. Let $H = K(1, 5)$; thus, $\overline{H} = K_1 \cup K_5$. Because H has no cycles (hence no 4-cycles) and \overline{H} has no 6-cycles, $c(4, 6) \geq 7$. Let G be a graph of order 7, and assume G has no 4-cycles. We show that \overline{G} contains a 6-cycle. Since $c(4, 5) = 7$ by Theorem 4 and since G has no 4-cycles, it follows that \overline{G} has a 5-cycle $C: u_1, u_2, u_3, u_4, u_5, u_1$. Let the remaining vertices be denoted by v_1 and v_2.

If v_1 or v_2 is adjacent in \overline{G} to two consecutive vertices of C, then \overline{G} has a 6-cycle. Assume neither v_1 nor v_2 is adjacent in \overline{G} to consecutive vertices of C so that each of v_1 and v_2 is joined in \overline{G} to a set of three vertices of C (not all consecutive). If there exist two vertices of C joined in G to both v_1 and v_2, then G has a 4-cycle which produces a contradiction. However, there must exist one vertex of C joined in G to v_1 and v_2; hence we assume, without loss of generality, that v_1 and v_2 are joined in G to u_1, the edges $v_1u_2, v_1u_4, v_2u_3, v_2u_5 \in E(G)$, while $v_1u_3, v_1u_5, v_2u_2, v_2u_4 \in E(\overline{G})$. Now \overline{G} contains the 6-cycle $v_1, u_3, u_2, v_2, u_4, u_5, v_1$.

We are now prepared to determine the remaining values of $c(4, n)$.

Theorem 6. For $n \geq 6$, $c(4, n) = n + 1$.

Proof. Let \(n \geq 6 \) and let \(H = K(1, n - 1) \) so that \(\overline{H} = K_1 \cup K_{n-1} \). The graph \(H \) has no 4-cycles and its complement \(\overline{H} \) has no \(n \)-cycles; therefore, \(c(4, n) \geq n + 1 \). We proceed by induction on \(n \) (\(\geq 6 \)). That \(c(4, 6) = 7 \) is the result of Theorem 5. Assume that, for some \(n \geq 6 \), \(c(4, n) = n + 1 \); hence, for every graph \(F \) of order \(n + 1 \), either \(F \) contains a 4-cycle or \(\overline{F} \) contains an \(n \)-cycle. We consider the number \(c(4, n + 1) \). Since \(c(4, n + 1) \geq n + 2 \), it suffices to prove that if \(G \) is a graph of order \(n + 2 \), either \(G \) has a 4-cycle or \(\overline{G} \) has an \((n + 1) \)-cycle. Suppose \(G \) does not contain a 4-cycle. Since \(c(4, n) = n + 1 \) by the induction hypothesis, it follows that \(\overline{G} \) contains an \(n \)-cycle, say \(C: u_1, u_2, \ldots, u_n, u_1 \). Designate the other two vertices by \(v_1 \) and \(v_2 \).

If \(v_1 \) or \(v_2 \) is adjacent in \(\overline{G} \) to consecutive vertices of \(C \), then \(\overline{G} \) contains an \((n + 1)\)-cycle, completing the proof. Assume, therefore, that neither \(v_1 \) nor \(v_2 \) is adjacent in \(\overline{G} \) to consecutive vertices of \(C \), which implies that each of \(v_1 \) and \(v_2 \) is adjacent in \(G \) to some set of \(\{n/2\} \) vertices of \(C \) such that the set contains at least one of every two consecutive vertices of \(C \). If \(v_1 \) and \(v_2 \) are adjacent in \(G \) to the same two (or more) vertices of \(C \), then \(G \) contains a 4-cycle, which is contradictory. Thus we assume that \(v_1 \) and \(v_2 \) are mutually adjacent in \(G \) to one or no vertices of \(C \). We consider these two cases.

Case 1. Assume that \(v_1 \) and \(v_2 \) are mutually adjacent in \(G \) to no vertices of \(C \). In this case, it necessarily follows that each of \(v_1 \) and \(v_2 \) is joined in \(G \) to exactly \(n/2 \) vertices of \(C \) such that neither \(v_1 \) nor \(v_2 \) is adjacent in \(G \) to two consecutive vertices of \(C \). Hence, \(n \) is even and, without loss of generality, we assume \(v_1 \) is joined in \(G \) to the vertices of \(S_1 = \{u_i \mid i \text{ is odd}\} \) and \(v_2 \) is joined in \(G \) to the vertices of \(S_2 = \{u_i \mid i \text{ is even}\} \). Therefore, \(v_1 \) is joined in \(\overline{G} \) to the elements of \(S_2 \), and \(v_2 \) is adjacent in \(\overline{G} \) to the elements of \(S_1 \). If all edges \(u_i u_j \) with \(i \) and \(j \) odd, belong to \(G \), then since \(n \geq 6 \), \(G \) contains the 4-cycle \(u_1, v_1, u_3, u_5, u_1 \), which is contrary to hypothesis. Therefore, \(\overline{G} \) contains an edge \(u_i u_j \) with \(i \) and \(j \) odd such that \(1 \leq i < j < n \), say. The graph \(\overline{G} \) thus contains the \((n + 1)\)-cycle \(u_i, u_j, u_{j-1}, \ldots, u_{i+1}, v_1, u_{j+1}, u_{j+2}, \ldots, u_{i-1}, u_i \).

Case 2. Assume that \(v_1 \) and \(v_2 \) are mutually adjacent in \(G \) to exactly one vertex of \(C \), say \(u_1 \). Exactly one of \(v_1 \) and \(v_2 \) is adjacent in \(G \) to \(u_2 \), for if this were not the case, then \(v_1 \) and \(v_2 \) must be joined in \(G \) to \(u_3 \), which is contrary to our assumption. Without loss of generality, we suppose that \(v_1 u_2 \in E(G) \). Necessarily, \(v_2 u_3 \in E(G) \) or else \(v_2 \) is joined in \(\overline{G} \) to the consecutive vertices \(u_2 \) and \(u_3 \) of \(C \), which we have previously ruled out. By the same reasoning, \(v_1 u_4 \in E(G) \), \(v_2 u_5 \in E(G) \), etc. Hence, if we let \(S_1 \) and \(S_2 \) be defined as in Case 1, then \(v_1 \) is joined in \(G \) to the elements of \(\{u_1\} \cup S_2 \) and joined in \(\overline{G} \) to the vertices of \(S_1 - \{u_1\} \), while \(v_2 \) is joined in \(G \) to the vertices of \(S_1 \) and joined in \(\overline{G} \) to the vertices of \(S_2 \).

If \(G \) contains all edges \(u_i u_j \) with \(i \) and \(j \) even, then since \(n \geq 6 \), \(G \) contains
the 4-cycle \(v_1, u_2, u_4, u_6, v_1 \) which produces a contradiction. Therefore, \(\overline{G} \) contains some edge \(u_iu_j \), where \(i \) and \(j \) are even and \(1 < i < j \leq n \), say. The graph \(G \) then has the \((n + 1)\)-cycle \(u_j, u_i, u_{i+1}, \ldots, u_{j-1}, v_1, u_{i-1}, u_{i-2}, \ldots, u_{j+1}, u_j \), which yields the desired result.

The numbers \(c(5, n) \). We have already established the value of \(c(5, n) \) for \(n = 3 \) and \(n = 4 \). In order to present a formula for \(c(5, n) \), \(n \geq 5 \), we shall first determine \(c(5, 5) \).

Theorem 7. \(c(5, 5) = 9 \).

Proof. Let \(H = K(4, 4) \) so that \(\overline{H} = K_4 \cup K_4 \). Neither \(H \) nor \(\overline{H} \) contains a 5-cycle; thus, \(c(5, 5) \geq 9 \). Let \(G \) be a graph of order 9, and assume that neither \(G \) nor \(\overline{G} \) has a 5-cycle.

Since \(c(4, 4) = 6 \), at least one of \(G \) and \(\overline{G} \) contains a 4-cycle. Without loss of generality, we assume that \(G \) contains the 4-cycle \(C: u_1, u_2, u_3, u_4, u_1 \). Denote the other vertices of \(G \) by \(v_1, v_2, v_3, v_4, \) and \(v_5 \). No \(v_i \) is adjacent in \(G \) to two consecutive vertices of \(C \) since \(G \) contains no 5-cycle. Hence each \(v_i \) is joined in \(G \) to two opposite vertices of \(C \). We now consider two cases, assuming throughout that \(v_1v_2 \in E(\overline{G}) \).

Case 1. Assume \(v_1 \) and \(v_2 \) are adjacent in \(\overline{G} \) to the same pair of opposite vertices of \(C \), say \(u_1 \) and \(u_3 \). None of \(v_3, v_4, \) and \(v_5 \) is joined in \(\overline{G} \) to both \(u_1 \) and \(u_3 \), for then we have conditions which produce a 5-cycle, as described above. Therefore, each of \(v_3, v_4, \) and \(v_5 \) is joined in \(\overline{G} \) to \(u_2 \) and \(u_4 \). Now \(v_3v_4 \in E(G) \), for otherwise \(v_3, v_4, u_2, v_5, u_4, v_3 \) is a 5-cycle in \(G \). Similarly, \(v_3v_5, v_4v_5 \in E(G) \).

If \(v_1 \) is joined in \(\overline{G} \) to one of \(v_3, v_4, \) and \(v_5 \), and \(v_2 \) is joined in \(\overline{G} \) to some other vertex of \(v_3, v_4, \) and \(v_5 \), then \(\overline{G} \) contains a 5-cycle. Since \(G \) has no 5-cycles, it follows that one of \(v_1 \) and \(v_2 \) is joined in \(G \) to all of \(v_3, v_4, \) and \(v_5 \), say \(v_2v_3, v_2v_4, v_2v_5 \in E(G) \). If there are two edges of \(G \) from the vertices of \(C \) to two distinct vertices of \(v_3, v_4, \) and \(v_5 \), then \(G \) contains a 5-cycle. Because \(G \) cannot contain a 5-cycle, there must exist a vertex among \(v_3, v_4, \) and \(v_5 \), say \(v_5 \), which is joined in \(\overline{G} \) to all vertices of \(C \). Thus, \(\overline{G} \) contains the 5-cycle \(v_5, u_3, v_1, v_2, u_1, v_5 \), which produces a contradiction.

Case 2. Assume \(v_1 \) is adjacent in \(\overline{G} \) to \(u_1 \) and \(u_3 \), and \(v_2 \) is adjacent in \(\overline{G} \) to \(u_2 \) and \(u_4 \). Suppose \(v_3 \) is adjacent in \(\overline{G} \) to \(u_1 \) and \(u_3 \). Necessarily, \(v_2 \) is adjacent in \(\overline{G} \) to \(u_2 \) and \(u_4 \), for otherwise we have conditions sufficient to produce a
5-cycle in \(G \), as mentioned earlier. For the same reason, \(v_2u_1, v_2u_3 \in E(G) \). The vertex \(v_1 \) is joined in \(G \) to \(u_2 \) or \(u_4 \), for otherwise we return to Case 1. Thus, we assume \(v_1u_2 \in E(G) \). Now \(v_1v_3 \in E(G) \), or else \(v_1, v_3, u_4, u_3, u_2, v_1 \) is a 5-cycle in \(G \). However, this places us in Case 1 again, where \(v_1 \) and \(v_3 \) are playing the roles of \(v_1 \) and \(v_2 \), respectively.

This completes the proof.

We conclude this section by presenting a formula for \(c(5, n) \) for all \(n \geq 5 \).

Theorem 8. For \(n \geq 5 \), \(c(5, n) = 2n - 1 \).

Proof. Let \(H = K(n - 1, n - 1) \) so that \(\overline{H} = K_{n-1} \cup K_{n-1} \). The graph \(H \) contains no 5-cycle, and \(\overline{H} \) has no \(n \)-cycle; therefore, \(c(5, n) \geq 2n - 1 \). We verify that \(c(5, n) = 2n - 1 \) by induction on \(n \) (\(\geq 5 \)), the result following for \(n = 5 \) by Theorem 7.

Assume \(c(5, n) = 2n - 1 \) for some \(n \geq 5 \), and let \(G \) be a graph of order \(2n + 1 \). Since \(c(5, n + 1) \geq 2n + 1 \), it suffices to show that \(G \) contains a 5-cycle or \(\overline{G} \) contains an \((n + 1) \)-cycle. Assume that \(G \) has no 5-cycle. Since \(c(5, n) = 2n - 1 \), the graph \(\overline{G} \) contains an \(n \)-cycle \(C: u_1, u_2, \ldots, u_n, u_1 \). Designate the remaining vertices by \(v_1, v_2, \ldots, v_n, v_{n+1} \).

If some \(v_i \) (\(1 \leq i \leq n + 1 \)) is adjacent in \(\overline{G} \) to two consecutive vertices of \(C \), then \(\overline{G} \) contains an \((n + 1) \)-cycle, completing the proof. Assume, therefore, that no \(v_i \) is adjacent in \(\overline{G} \) to two consecutive vertices of \(C \). This implies that each \(v_i \) is adjacent in \(G \) to some set of \(\lceil n/2 \rceil \) vertices of \(C \), where at least one vertex in any pair of consecutive vertices of \(C \) belongs to the set. If every two distinct \(v_i \) are adjacent in \(\overline{G} \), then \(\overline{G} \) contains \(K_{n+1} \) and hence \(C_{n+1} \) as a subgraph. Suppose, then, there are no two distinct \(v_i \), say \(v_1 \) and \(v_2 \), which are adjacent in \(G \).

We now consider three cases, assuming throughout that \(v_1v_2 \in E(G) \).

Case 1. Assume there is a vertex \(v_k \) (\(k \neq 1, 2 \)) such that \(v_1 \) and \(v_k \) are joined in \(G \) to a vertex \(u_i \) on \(C \), and \(v_2 \) and \(v_k \) are joined in \(G \) to a vertex \(u_j \) on \(C \). If it is possible to select \(u_i \) and \(u_j \) such that \(u_i \neq u_j \), then \(G \) contains the 5-cycle \(v_k, u_i, v_1, v_2, u_j, v_k \), which is contradictory. Hence we may suppose that \(v_1 \) and \(v_k \) are joined in \(G \) to only one vertex \(u_i \) on \(C \), and \(v_2 \) and \(v_k \) are joined on \(G \) to only one vertex on \(C \), namely \(u_j \). Since at least one vertex in every pair of consecutive vertices of \(C \) is joined in \(G \) to \(v_1 \) (respectively \(v_2 \)), it follows that every vertex of \(C \) different from \(u_i \) is joined in \(G \) to exactly one of \(v_1 \) and \(v_2 \). The vertex \(v_k \) is adjacent in \(G \) to at least \(\lceil n/2 \rceil \) vertices of \(C \); therefore, \(v_k \) must be adjacent in \(G \) to a vertex \(u \) which is joined in \(G \) to \(v_1 \), and, furthermore, \(v_k \) is adjacent in \(G \) to a vertex \(u_s \) (different from \(u \)) which is joined in \(G \) to \(v_2 \). Hence \(G \) contains a 5-cycle, which is contrary to hypothesis.

We note that if \(n \) is odd, Case 1 necessarily applies. We may henceforth assume \(n \) to be even.

Case 2. Assume Case 1 does not hold and there exists some vertex \(v_k \) (\(k \neq 1, 2 \)) which is adjacent in \(G \) to no vertex of \(C \) which is joined in \(G \) to \(v_1 \) or \(v_2 \).
This implies that whenever $v_1u_i \in E(G)$, $1 \leq i \leq n$, then $v_ku_i \in E(\overline{G})$, and whenever $v_2u_j \in E(G)$, $1 \leq j \leq n$, then $v_ku_j \in E(\overline{G})$. Since v_k is joined in G to at least \(\lfloor n/2 \rfloor \) vertices of C, and v_k is joined in \overline{G} to at least \(\lfloor n/2 \rfloor \) vertices of C, it follows that v_k is adjacent in G to exactly $n/2$ vertices of C and is adjacent in \overline{G} to exactly $n/2$ vertices of C. Therefore, we may assume here that v_1 and v_2 are joined in G to the vertices of $S_1 = \{u_i \mid i \text{ is odd}\}$ and joined in \overline{G} to the vertices of $S_2 = \{u_i \mid i \text{ is even}\}$, while v_k is joined in G to the vertices of S_2 and joined in \overline{G} to the elements of S_1.

If i and j are both even, then $u_iu_j \in E(\overline{G})$; for otherwise, we may select an even $t \neq i, j$ (since $n \geq 6$ here) to obtain the 5-cycle $u_t, u_j, v_2, u_t, v_1, u_i, v_2, u_t, u_j, v_1, v_2, u_t, u_j, v_1, u_i, v_2, u_t, u_j, v_1, v_2$, which gives the desired result.

Case 3. Assume that Case 1 and Case 2 do not hold. Hence each v_k, $k \geq 3$, has the properties that whenever $v_1u_i, v_ku_i \in E(G)$, $1 \leq i \leq n$, then $v_2u_i \in E(\overline{G})$, and whenever $v_2u_j, v_ku_j \in E(G)$, $1 \leq j \leq n$, then $v_1u_j \in E(\overline{G})$. Let S_1 and S_2 be defined as in Case 2. We may assume in this case that v_1 and v_3, say, are joined in G to the elements of S_1 and joined in \overline{G} to the elements of S_2, while v_2 is joined in G to the vertices of S_2 and joined in \overline{G} to the vertices of S_1.

If $v_1v_3 \in E(G)$, then we have the conditions specified in Case 2, where v_1 and v_3 play the roles of v_1 and v_2, respectively. Hence, $v_1v_3 \in E(\overline{G})$, and \overline{G} contains the $(n+1)$-cycle $v_1, v_3, u_2, u_3, \ldots, u_n, v_1$.

The number $c(6, 6)$. We next determine the value of $c(6, 6)$.

Theorem 9. $c(6, 6) = 8$.

Proof. Let $H = K(2, 5)$ so that $\overline{H} = K_2 \cup K_5$. Since neither H nor \overline{H} has a 6-cycle, $c(6, 6) \geq 8$. Let G be a graph of order 8, and suppose neither G nor \overline{G} contains a 6-cycle. We distinguish two cases.

Case 1. Assume neither G nor \overline{G} has a 5-cycle. Since $c(4, 4) = 6$ by Theorem 3, at least one of G and \overline{G} has a 4-cycle; say G contains the 4-cycle $C: u_1, u_2, u_3, u_4, u_1$. Denote the remaining vertices of G by v_1, v_2, v_3, v_4. Since G has no 5-cycle, no v_i is joined in G to two consecutive vertices of C. This implies that every v_i is joined in \overline{G} to some pair of opposite vertices of C. We consider two subcases.

Subcase 1a. Suppose three or more v_i are joined in \overline{G} to the same pair of opposite vertices of C; say v_1, v_2, and v_3 are joined in \overline{G} to u_1 and u_2. Every two distinct vertices in $\{v_1, v_2, v_3\}$ are adjacent in G, for otherwise \overline{G} contains a 5-cycle. Also, the vertex v_4 cannot be joined in \overline{G} to two other v_i; otherwise, a 6-cycle exists in \overline{G}. Thus, we assume v_2v_4 and v_3v_4 are edges of G. Not both u_2v_2 and u_4v_3 are edges of G, for then G contains a 6-cycle. Without loss of generality, we may assume u_2v_2 is an edge of \overline{G}. If u_2v_1 is an edge of \overline{G}, then \overline{G}
contains a 6-cycle. Furthermore, if \(u_2v_3 \in E(\overline{G}) \), then \(\overline{G} \) contains a 6-cycle.
Therefore, \(u_2v_1, u_2v_3 \in E(G) \) and \(G \) contains the 5-cycle \(u_2, v_1, v_2, u_4, v_3, u_2 \). This produces a contradiction.

Subcase 1b. Suppose exactly two \(v_i \) are joined in \(\overline{G} \) to the same pair of opposite vertices of \(C \); say \(v_1 \) and \(v_2 \) are joined in \(\overline{G} \) to \(u_2 \) and \(u_4 \) while \(v_3 \) and \(v_4 \) are joined in \(\overline{G} \) to \(u_1 \) and \(u_3 \). Assume further that \(v_1v_3 \) is an edge of \(\overline{G} \). The edge \(v_3u_2 \) belongs to \(G \), for otherwise \(v_3, u_2, v_2, u_4, v_1, v_3 \) is a 5-cycle in \(\overline{G} \). Similarly, 5-cycles result in \(\overline{G} \) unless \(v_4u_2 \) and \(v_4u_4 \) are edges of \(G \). Next, \(v_4v_3 \in E(\overline{G}) \), or else \(v_4, v_3, u_2, u_3, u_4, v_4 \) is a 5-cycle in \(G \). In a like manner, it follows that \(v_2u_1 \in E(G) \) and \(v_2v_3 \in E(\overline{G}) \). However, \(v_2, u_3, v_4, v_3, u_1, v_2 \) is a 6-cycle of \(\overline{G} \) which is contradictory. Hence, we must have \(v_1v_3 \in E(G) \). By symmetry, we may also conclude that \(v_2v_3, v_1v_4, v_2v_4 \in E(G) \).

We observe that not both \(u_1v_2 \) and \(u_3v_1 \) are edges of \(G \), for otherwise \(u_1, v_2, v_4, v_1, u_3, u_4, u_1 \) is a 6-cycle of \(G \). However, not both \(u_1v_2 \) and \(u_3v_1 \) are edges of \(\overline{G} \) either, since then \(u_1, v_2, u_4, v_1, u_3, v_4, u_1 \) is a 6-cycle of \(\overline{G} \). Thus, we may assume that \(u_1v_2 \in E(G) \) and \(u_3v_1 \in E(\overline{G}) \). If the edge \(u_4v_4 \) is in \(G \), then \(G \) contains the contradictory 6-cycle \(u_4, v_4, v_3, v_2, u_1, u_4 \). On the other hand, if \(u_4v_4 \) is in \(\overline{G} \), then \(\overline{G} \) contains the 6-cycle \(u_4, v_4, u_3, v_1, u_2, v_2, u_4 \). We, therefore, have a contradiction in this subcase, also.

Case 2. Assume that at least one of \(G \) and \(\overline{G} \) contains a 5-cycle. Without loss of generality, we assume that \(G \) has the 5-cycle \(C: u_1, u_2, u_3, u_4, u_1 \) with the remaining vertices denoted by \(v_1, v_2, \) and \(v_3 \). Since \(G \) has no 6-cycles, no \(v_i \) (\(1 \leq i \leq 3 \)) is adjacent in \(G \) to two consecutive vertices of \(C \). Thus, each \(v_i \) is joined in \(\overline{G} \) to three nonconsecutive vertices of \(C \).

We now make use of the following fact: If \(S_1, S_2, S_3 \) are 3-element subsets of a 5-element set, then there exist \(i, j \) (\(i \neq j \)) such that \(|S_i \cap S_j| \geq 2 \). Hence, if \(S_i \) (\(i = 1, 2, 3 \)) denotes the set of three nonconsecutive vertices of \(C \) which are joined in \(\overline{G} \) to \(v_i \), then there exist two vertices \(v_i \), say \(v_1 \) and \(v_2 \), which are mutually adjacent in \(\overline{G} \) to at least two vertices of \(C \). This suggests a breakdown into two subcases.

Subcase 2a. Assume \(v_1 \) and \(v_2 \) are joined in \(\overline{G} \) to the same three vertices of \(C \); say \(v_1 \) and \(v_2 \) are adjacent in \(\overline{G} \) to \(u_1, u_3, \) and \(u_4 \). If \(v_1 \) is joined in \(\overline{G} \) to any two of the vertices \(u_1, u_3, \) and \(u_4 \), then it follows directly that \(\overline{G} \) contains a 6-cycle, which is contrary to hypothesis. Thus, we may assume that \(v_1 \) is joined in \(\overline{G} \) to exactly one of \(u_1, u_3, \) and \(u_4 \). If \(v_3u_1 \in E(\overline{G}) \), then we must have at least one of the edges \(v_3u_3 \) and \(v_3u_4 \) in \(\overline{G} \) also; therefore, without loss of generality, we assume that \(v_1u_4 \in E(\overline{G}) \). This further implies that \(v_3u_2, v_3u_5 \in E(\overline{G}) \) and \(v_3u_1, v_3u_3 \in E(G) \). The edge \(v_2u_5 \) belongs to \(G \), for otherwise \(v_2, u_5, v_3, u_4, v_1, u_3 \) is a 6-cycle of \(\overline{G} \). In a like manner, it follows that \(v_2u_2, v_1u_5, v_1u_2 \in E(G) \). However, then, \(v_2, u_2, u_3, v_3, u_1, u_5, v_2 \) is a 6-cycle of \(G \), which is impossible.
Subcase 2b. No two v_i are joined in \overline{G} to the same three vertices of C, but v_1 and v_2 are joined in \overline{G} to two common vertices of C. Assume v_1 is adjacent in \overline{G} with each of the vertices $u_1, u_3, \text{and } u_4$; thus, v_2 is adjacent in \overline{G} with exactly two of the three vertices $u_1, u_3, \text{and } u_4$. The vertex v_2 cannot be joined in \overline{G} to u_3 and u_4, for then v_2 must be joined in \overline{G} to u_1 as well. Hence, without loss of generality, we assume v_2 is joined in \overline{G} to u_1 and u_4. Necessarily, then, $v_2u_2 \in E(\overline{G})$. We now consider the location of the edges v_3u_1 and v_3u_4, observing that not both v_3u_1 and v_3u_4 are in \overline{G} (for this is the situation discussed in Subcase 2a).

(i) If v_3 is joined in \overline{G} to neither u_1 nor u_4, then, of course, v_3 is adjacent in \overline{G} to $u_2, u_3, \text{and } u_5$. However, \overline{G} contains the 6-cycle $v_1, u_3, v_3, u_2, v_2, u_4, v_1$, which is impossible.

(ii) Suppose v_3 is joined in \overline{G} to only one of u_1 and u_4. Without loss of generality, we assume that $v_3u_1 \in E(\overline{G})$. Unless $v_3u_3, v_3u_5 \in E(\overline{G})$, we are returned to previously treated cases. However, $v_1, u_3, v_3, u_1, v_2, u_4, v_1$ is now a 6-cycle of \overline{G} which is a contradiction.

We summarize the values established for $c(m, n)$ in the following table.

<table>
<thead>
<tr>
<th>m</th>
<th>n</th>
</tr>
</thead>
</table>
| 3 | 6 7 9 11 13 15
| 4 | 7 6 7 7 8 9 |
| 5 | 9 7 9 11 13 15 |
| 6 | 11 7 11 8 |
| 7 | 13 8 13 |
| 8 | 15 9 15 |

REFERENCES

2. F. Harary, Graph theory, Addison-Wesley, Reading, Mass., 1969. MR 41 #1566.

DEPARTMENT OF MATHEMATICS, WESTERN MICHIGAN UNIVERSITY, KALAMAZOO, MICHIGAN 49001

DEPARTMENT OF MATHEMATICS, CARLETON COLLEGE, NORTHFIELD, MINNESOTA 55057