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SIMPLE GROUPS OF ORDER  2a3b5c7dp
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LEO J. ALEX7)

ABSTRACT.  Let  PSL(22, q) denote the projective special linear group of

degree 77  over  GF(ç),  the field with  q  elements.  The following theorem is

proved.  Theorem.  Let  G  be a simple group of order 2a3 5C7 p»  a > 0, p  azz odd

prime.  If the index of a Sylow p-subgroup of G in its normalizer is two, then  G

is isomorphic to one of the groups,  PSL(2, 5), PSL(2, 7), PSL(2, 9),  PSL((2, 8),
PSL(2, 16), PSL(2, 25), PSL(2, 27), PSL(2, 81), and PSL(3, 4).

1.  Introduction.

1.1.  This work was motivated by the work of R. Brauer, D. Mutchler and the

author.   Brauer [4] classified the simple groups of order 5 • 3a2  .  Mutchler [l5]

and the author [l] classified simple groups of orders 2a3 cAp and 2a3 Iep respectively, in

which the index of Sylow p-subgroup  in its normalizer is 2.   In this paper these re-

sults are extended to groups of order  2a3  5C7 p..

In  §2 we discuss the degrees of the irreducible characters in the principal  p-

block,   BQ(p), of  G.   In particular, we list the possibilities for the equation relating

these character degrees.

In §3 we consider each of the possible character degree equations for  BAp)

listed in §2.  Using class algebra coefficients and simple group classification

theorems, we show that  G is isomorphic to one of the groups,   PSL(2, 5),

PSL(2, 7), PSL(2, 9), PSL(2, 8),  PSL(2, 16),  PSL(2, 25),  PSL(2, 27), PSL(2, 81),

and  PSL(3, 4).

L2.   Notation.   In general, upper case letters denote groups, and  S    is used

to denote a Sylow p-subgroup.  If A  is a subgroup of a group  G,   then  N(A),   C(A),

[Gi A],  \A\  denote the normalizer of A  in  G,  the centralizer of A  in  G,  the index

of A  in  G,   and the order of A, respectively.

The notation  x    is used for a group element of order n.   Then  C(x ) refers to

the centralizet of the element x    in  G.
72

A character of degree  m is denoted by  x   •

The notation  a(x , x   , x ) denotes the class algebra coefficient which is the
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number of ways each element of the conjugacy class of x    can be written as a

product of an element of the class of x    by an element of the class of x   .r ZZ ' Z7Z

2. The degree equation for ß Ap).

2.1. Let  G be a simple group satisfying the hypotheses:

I. |G| = 2a3  5C7 p,  where  a > 0 and p is an odd prime.

II. [NiSp)z  Sp] . 2.

Let  x    be an element of order p,  and x    be a p-regular element.  Hypothesis

II and Brauer's work [5] yield the following information concerning  B Ap).

B Qip) contains the identity character,  1, a character  y and  ip - l)/2 charac-

ters  x(m',  m = 1, 2, • • • , ip - l)/2.   There are signs  8 and  8' so that yix ) = 8,

2X(m)Up) = 5',  722 = 1, 2, - - - , ip - l)/2,  y(l) = 8 imodp), x(m>(l) = - 28' (mod p),

m = 1, 2, •••, ip - l)/2,

(2.1) l + 8yixq) + 8'yMixq) = 0.

If x   = 1  in (2.1) we obtain the following relation between the degrees of the

irreducible characters in  BQip),

(2.2) l + Sx(l) + 8'X(m)(l) = 0.

We call (2.2) the degree equation for  BQip).

2.2. Solutions to the degree equation.   Since  y(l),  y^m\\), divide   \G\   and

are relatively prime to  p,  hypothesis I implies that (2.2) can be written in the

form

(2.3) l + x = y,

where  x and y  are of the form   2r3'*5/7"„  Lehmer [14]  and the author [2] have

shown independently that the solutions to (2.3) are  (x, y) = (1, 2), (2, 3), (3, 4),

(4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10), (14, 15), (15, 16), (20, 21), (24, 25),

(27, 28), (35, 36), (48, 49), (49, 50), (63, 64), (80, 81), (125, 126), (224, 225),

(2400, 2401), and (4374, 4375).

3. Proof of main theorem.

3.1. Preliminary results.   Before considering the possible degree equations

we list some lemmas which are extremely useful in using the degree equation for

B Ap) to determine the order of the group and the structures of various subgroups

of G.   The first lemma follows from the work [9] of Brauer and Tuan.

Lemma 3.1.   Let  G be a simple group of order p ■ q    • r,  where p  and q are

primes,   ipq, r) = 1.   Suppose the degree equation for BAp)  is SS.^Xl) = 0,   and

G has no elements of order pq.   Then for any q-block,   Biq),

Z>l%4l)S0     (mod/),
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where the summation is taken over all characters in BQ(p) O B(q).

The following lemma follows from the work [9] of Brauer and Tuan and Lemma

3.1.

Lemma 3.2. Let G be a group satisfying hypotheses I and II with degree

equation qr = w + 1, where q is 2, 3, 5 or 7. Then qT is the full power of q

dividing  \G\  and a character of degree qr vanishes on all q-singular elements.

The following lemmas follow immediately from Lemmas 3.4 and 3.5 of [l].

Lemma 3.3.   Let  G  be a simple group satisfying hypotheses I and II.   Lez" x ,

x    be p.regular elements of G,   and x    be an element of order p.,   If (2.3) is the
s p

degree equation for BAp),  then the class algebra coefficient a(x, x , x ) satis-

fies

|G|[x-X>r)][x-X>s)]
(3-D a(x , x  , x  ) =-,

''    *     p \C(x)\\C(x )\x(X+ 1)t

where x    zs a character in BAp) of degree x.

Lemma 3.4.   // G  is a simple group satisfying hypotheses I and II then   G has

one class of involutions and, if x.  is an involution in  G and x     is an element of' ¿ p '

order p  in  G.   then

(3.2) a(x2, %2, x ) = p.

Finally we list the main results of [l] and [l5]>

Lemma 3.5.   Let G be a simple group of order 2a3 7cp,   a. b > 0, p  a prime

distinct from 2, 3 and 7.  If G satisfies hypothesis II then G is isomorphic to one

of the groups.   PSL(2, 5), PSL(2, 9), PSL(2, 27)   and PSL(3, 4).

Lemma 3.6.   Let  G  be a simple group of order 2a3  JCp,  a,  b > 0,  p  a prime

distinct from 2, 3 and 5.  // G satisfies hypothesis II then  G  is isomorphic to one

of the groups,   PSL(2, 8), PSL(2, 16), PSL(2, 25), and PSL(2, 81).

3.2.  Proof of main theorem.   Next the possible degree equations are considered

and the simple groups, G, which satisfy hypotheses I and II are determined.

First of all, the equation   1 + 1 = 2 is impossible since  G  is a simple group,

and the equation   1 + 2=3 is inconsistent with the relations above (2.1).

Lemma 3.7.   // G  is a simple group satisfying I and II, then

(1) // G has degree equation   1 + 3 = 4 or  1 + 4=5,   then  G  is isomorphic

to PSL(2, 5).

(2) G  cannot have degree equation   1 + 5 = 6  or   1 + 6 = 7.
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(3) If G has degree equation   1 + 7 = 8,  then G is isomorphic to PSL(2, 7).

(4) // G  has degree equation   1 + 8 = 9,  then  G is isomorphic to  PSL(2, 8) or

PSL(2, 9).

(5) G  cannot have degree equation   I + 9 = 10  or  1 + 14 = 15.

(6) // G has degree equation  1 + 15 = 16,  then G  is isomorphic to PSL(2, 16).

Proof.   Statement (1) follows from the works of Blichfeldt [3] and Brauer [6].

Statement (2) is an immediate consequence of Brauer [6] and Wales [17].  Statement

(3) follows from the work [17] of Wales.

When the degree equation is   1 + 8 = 9, Lemma 3.2 and the relations above

(2.1) imply that   |G| = 23  5C7 p,  where  p = 5 or 7.  Then since a Sylow 2-sub-

group of  G is of order 8, statement (4) follows from the works of Brauer-Suzuki [8],

Gorenstein [12],  and Gorenstein-Walter [l3J.

When the degree equation is   1 + 9 = 10, the relations above (2 1) imply that

p = 11, and then the work [ll] of Feit implies that G  is isomorphic to PSL(2,  11).

But PSL(2,  11) has no character of degree 9, and so we reach a contradiction.

When the degree equation is   1 + 14 = 15,  the relations above (2,1) and the

class algebra coefficient  aixy, x„ *13),  x? £CiS?), yield   |G| = 2a3è5c7 •  1.3.

Then Lemma 3.1 applied to  BA7) n B  (13) implies that the identity character

and the 6 characters of degree 15 are in  ß  (7).   This is inconsistent with the re-

lations above (2.1) with  p = 7.   This proves statement (5).

When the degree equation is    1 + 15 = 16,   Lemma 3.2 and the relations above

(2. 1) yield   |G| = 243h5c7dp, where p = 7 or 17.  When p = 7,  d = 0  and then

Lemma 3.6 leads to a contradiction.  When  p = 17, the work [l i] of Feit implies

that  G is isomorphic to PSL(2,  16).   This proves statement (6).

It is an easy matter to verify that the groups   PSL(2, 5), PSL(2, 7), PSL(2, 8),

PSL(2, 9) and PSL(2,  16)  satisfy hypotheses I and II.

We next consider the degree equation   1 + 20 = 21.

Lemma 3.8.   There is no simple group  G satisfying hypotheses I and II with

degree equation   1 + 20 = 21.

Proof.   Let  x2 £ C(S2), x    £ C(S A,  x    £ C(S A, and  x-, £ C(Sy).  Then the

relations above (2.1) and the class algebra coefficients  aix., x., x A,  i = 2, 3, 5,

7,  yield   |G| = 2a3fc5c7 • p where  a < 8  and even,  b < 5  and odd,   c < 3 and odd,

and p = 11 or 19.   When  a = 8,  the coefficient  a(xr x , x ) yields  ^20^2^ = ~ ^*

Thus  G has no elementary Abelian subgroup of order 8 and then [ 10, Theorem

4.2.7] leads to a contradiction.

When  p = 11, a count of Sylow 11-subgroups yields   |G| = 2  3 ■ 5 • 7 • 11,

2235537 •  11,   243 • 537 • 11,  or  26335 -7-11.   In the first two cases [l3] leads

to a contradiction,  When   |G| = 2  3-57-  11, Lemma 3=1 applied to
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BQ(11) n B0(3) yields a contradiction. If |C| = 26335 • 7 • 11, Lemma 3.1 applied to BQ(U)

O B0(7), the relations above (2.1) with p = 7 and the coefficient a(x2, x2, *n) yield

,6,[N(SA: C(SA] = 6 and  |C(x2)| = 2b3.

But then a count of Sylow 7-subgroups leads to a contradiction.

When  p = 19, a count of Sylow 19-subgroups yields   |G| = 2  3 • 5 • 7 •  19,

2  3   5 • 7 • 19  or  2  3 ■ 5  7 •  19.  In the first two cases a contradiction is obtained

by the application of Lemma 3.1 to BQ(5) O BQ(19). When  \G\ = 263 • 537 • 19, the

coefficients  a(x2, x , x    ) and  a(x , xy x    ) yield

(3.3) |C(x2)| = 265,  |C(x5)l/5322 and X2Q(*5) = ~ 5-

Clearly 3y, ¿5    so that  )¿20(y,) > 0.   Since y,  cannot be in   C(S ),  the class

algebra coefficient  a(y , y . x   A yields

(3-4) |C(y5)|/2452 and X2^J = 0.

Furthermore, every noncentral element y    in  S    satisfies (3-4). Now since

X20(^5) = - 5,  equation (2.1) implies that  y2J(x ) = -4.   Then   Sy (xA > 170

where the summation is taken over all characters,  y,  of G.   Thus   \C(x )| > 170

and then (3.3) implies that  2/\C(x )|.  Then Lemma 3.4 and equations (3.3) and

(3.4) imply that |C(y,)| = 5 . Now it is clear that the Sylow 5-subgroups of C(x A

and C(y A ate normal which in turn implies that the set, S, of Sylow 5-subgroups

of G is a trivial intersection, T.I., set. Next we represent a single S subgroup,

A, as a permutation group on the set S. Since the S "s are a TJ. set, the sub-

group fixing any other S B, is the identity. The following congruence is imme-

diate, r= 1 (mod 125), where r= |5|. This congruence is incompatible with |G|.

Thus   |G| ¿2  3 • 5  7 •  19    and Lemma 3.8 is proved.

Lemma 3.9.   Let  G be a simple group satisfying hypotheses I and II,  then

(1) If G has degree equation   1 + 24 = 25,   then  G  is isomorphic to

PSL(2, 25).

(2) // G has degree equation   1 + 27 = 28,  then G is isomorphic to

PSL(2, 27).

(3) G cannot have degree equation   1 + 35 = 36.

(4) G  cannot have degree equation   I + 48 = 49.

Proof.   Let x2 e C(S2),  x    £ C(S A,  and xy e C(Sy).  It the degree equation

is   1 + 24 = 25, Lemma 3.1, the relations above (2.1), and the class algebra coef-

ficients  a(x., x., x ),  i = 2, 3, 7,  yield   |G|   = 2a3b527cp where  a < 7 and odd,

b < 5  and odd,  d < 2 and even and p = 13 or 23.  When  a = 7,   X24^x2^ = - 8 anc^

then [10, Theorem 4.2,7] leads to a contradiction.   When  c = 0,  Lemma 3.5    im-

plies that G  is isomorphic to PSL(2, 25).  Otherwise, a count of Sylow p-subgroups
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yields   \G\ = 253 • 5272. 13.  Then the coefficient   a(xr x?, xXJ) yields

(3.5) |C(x7)|/2 • 72.

Thus the  S    subgroup of  C(xA is normal and then the set of S  's is a T.I. set.

Then as in the proof of Lemma 3,8 we see that the number of $_*s is congruent to

1 modulo 49.  This is incompatible with (3.5) and   |G|.  This proves (1).

When the degree equation is   1 + 27 = 28, Lemma 3.1, the relations above

(2.1) and the class algebra  coefficients  a(x., x., x ),  i = 2, 5, 7, yield   |G| =

2a3   5C7  p where  a < 8 and even,   c < 4 and even,  d < 3 and odd and p = 13  or

29.   If d=J>,  x27(*7) = - 22 whence (^      |(x   ),   l(*7))<0,  a contradiction.

When  c = 0,  Lemma 3.6 implies that  G is isomorphic to PSL(2, 27).  Otherwise, a

count of Sylow p-subgroups yields   \G\ = 2  3   5 7 •  13.   Then the work [13] leads

to a contradiction.   This proves (2).

Next, if the degree equation is   1 + 35 = 36,  the relations above (2.1) and the

coefficients  a(x., x., x ),  i = 2, 3, 5, 7,  yield   |G| = 2a3b5c7dp where  a < 10 and

even,   b < 4 and even,  c < 3  and odd,  d < 3  and odd and p = 37 or 17.  Now if

rf= 3,   X3,U7) = - 14 so that

(X35l(x7),   l(x7» < 0,

a contradiction.  Thus  d = 1.  When  £ = 37,   B.(37)  contains a character of degree

less than 37 and then the work [ll] of Feit leads to a contradiction.  Next, when

p = 17,   Lemma 3,1 applied to  B A7) n BQ(17) yields a contradiction.   Thus (3) is

proved.

Finally, if the degree equation is   1 + 48 = 49, the relations above (2.1),

Lemma 3,1, and the coefficients  a(x., x., x ),  i= 2, 3, 5,  yield   |G| = 2fl3  5C7  p,

where a < 8 and even,  b < 7  and odd,   c < 4 and even, and  p = 5 or 47.   If p = 5

or  c = 0,   Lemma 3.5 yields a contradiction.   Otherwise,  a count of Sylow 47-sub-

groups yields a contradiction.   This proves (4).

It is an easy matter to verify that PSL(2, 25) and PSL(2, 27) satisfy hypoth-

eses I and II.

Lemma 3.10.   There is no simple group,   G,   satisfying hypotheses I and II

with degree equation   1 + 49 = 50,

Proof.   As usual, let x2 £ C(S2),  x    e C(S A, x    £ C(S A and  x    £ C(SA. The

relations above (2.1), Lemma 3.2 and the class algebra coefficients   a(x., x., x ),

i = 2, 3, 5, yield   |G| = 2a3h5272p,  where  a < 11  and odd,  b < 8 and even, and

p = 3 or 17.  When  a = 11,   yAAxA = - 15,   and so  G has no elementary Abelian

subgroup of order 8.   Then, [lO, Theorem 4.2,7] leads to a contradiction.  When

h = 8»  X4c/X3) = - 32  so that    (y49|(*3),   1(*3)) < 0,   a contradiction.

If p = 17, a count of S17  subgroups yields   |G| = 2334527217  or 29527217. In
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the former case, the coefficient  a(x2, x 2> xjy)  implies that

(3.6) Zx2^2)>lC(x2)l'

where the summation is taken over all irreducible characters,   x->  °f  G.   This is a

contradiction.  In the latter case, the coefficient a(x2, x , x 1?) yields   |C(x2)| =

2  ,  and then the work [15] of Suzuki leads to a contradiction.

If p = 3,  a count of 5,  subgroups yields

\G\ = 293 • 5272,  273 • 5272,  253 • 5272, or 233 • 5272.

In the first two cases, the coefficient  a(x2, x , x ) and [10,  Theorem 4.2.7] imply

that (3.6) is satisfied, a contradiction.  When   |G| = 2  3-5  7  ,  the coefficient

a(x2, x , xA implies that (3.6) is satisfied unless  Y4o(x2^ = ~ ^"   ^aen equation

(2.1), Lemma 3.4 and the fact that  X40' X'.n are °f defect zero for the primes 7

and 5 respectively yields  a(x     x , x A = 129.  This is absurd since this coeffi-

cient must be a multiple of 5.   Finally when   |G| = 2  35 7  ,   it follows from the

coefficient  a(x , x , x A that  C(x A  is solvable and then the works [8], [12], and

[13]  lead to a contradiction.   This proves Lemma 3.10.

Lemma 3.11.   // G  is a simple group satisfying hypotheses I and II with de-

gree equation   1 + 63 = 64,  then  G  is isomorphic to PSL(3, 4).

Proof.   Here if x     x      and  x    are as usual, Lemma 3.2, the relations above

(2.1) and the coefficients a(x., x., x ),  i = 3, 5, 7,   yield  |G| = 263h5c7dp, where

b < 6  and even,   c < 6 and even,   d < 3  and odd, and p = 5, 31, or 13.  If p - 5,

c - 0  and then Lemma 3.5 implies that  G is isomorphic to PSL(3, 4).  When

c = 6,  X¿^x^ ~ - 62,  and then    (x63|(x5),    l(x  )) < 0,     a contradiction.

When  p = 31, a count of S       subgroups yields

\G\   =   26367331,   2632731,   263254731, or  2636547331.

In the first two cases, Lemma 3.5 leads to a contradiction.   In the thitd case,

Lemma 3.1 applied to  B Q(7) ID B (31) implies that the  15 characters of degree

64 are in  BQ(7)  which is impossible.   Finally, if  |G| = 2636547331,  the coeffi-

cient  a(xr xr *31) yields   |C(%7)|/325273,   and  Y6J(*7) = 14.   Furthermore,

\CixA\ = Ex2(*J>3572.

Thus   |C(x7)| = 5273,   3 5 73,   325 73,   3 5273,  or  325273.   In each of these cases

there is an element,  y,, of order  5 in   C(x?) which normalizes and, hence,

centralizes an  $7  subgroup of  C(xA.  Then the coefficient  a(y , y     x   A is not

integral, a contradiction.

When  p = 13, a count of  S^  subgroups yields   |G| = 26327 13,   2632547 13,

or  2  3   5  7   13.  In the first case Lemma 3.5 leads to a contradiction.
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When  |G|'= 2632547 13, the coefficients  aix., x., x^),  i = 3, 5, yield

|C(x7)|/32527 and  X6^x ] = *3  (mod 25).  Then  Sy^^ \cixJ\> unless

X63(%5)= 13    and     |CU5)| = 2 54,

X63(x5) = - 12    and     |CU5)| = 3 54.

Let  y.  be an element of order 5 in   C(x_,).  Then   |C(y  )| = 5  7k,  k > 1.  Considera-

tion of the coefficient  aiy     y     x    ) yields y,,(y,) = 28  (mod 35).   Then it is

clear that y, i  ZÍS ),  and 2 y iy A > |C(y )|  unless

(3.7) X63(y5) = -7    and    |C(y ?)| = 2 5 27.

Now let  A  be an  S    subgroup of  Ciy ).  Clearly  A  is a normal subgroup of  Ciy A,

and thus  A  centralizes the elements of order 7 in  Ciy ).  But this implies that all

nonidentity elements of  A  satisfy (3.7).  This is a contradiction since there must

be nonidentity elements of A  conjugate to  x      Thus 5"T|C(x7)|.  Now a count of

S    subgroups yields   |/V(S7)| = 21.   Then Burnside's Theorem and the relations

above (2,1) with  p = 7  imply that  B  (7) contains 3 characters whose degrees are

congruent to + 1  modulo 7 and 2 characters whose common degree is congruent to

+ 3 modulo 7.   Lemma 3.1 applied to  B A7) D BQ(13)  implies that the identity

character and  y6,  are in  BQ(7).   Then consideration of the tree for B  (7) (cf.

[9]) yields that the other characters in  BJ7) must be of degrees 13, 52, 52,  Then

consideration of the coefficient  a(x , x , xA yields  y.,U ) = - 3.   Thus   G has

no elementary Abelian subgroup of order 8.  Now [lO,   Theorem 4,2,7]  leads to a

contradiction.

Finally if  |G| = 2634527313,  the coefficient  aixT xy, x^) yields

|C(x7)|/3573  and  x63dy)= 14.   Furthermore  5/|C(xy)|   else  2 y2(x?) > |C(x7)|.

But then if y    is an element of order 5 in   C(x  ),  7  /|C(y  )|,  and hence the coef-

ficient  aiy     y     x    ) leads to a contradiction.

It is shown in [l] that  PSL(3, 4)  satisfies hypotheses I and IL   This proves

Lemma 3.11.

Lemma 3.12.   // G  is a simple group satisfying hypotheses I and II, then

(1) If G has degree equation   1 + 80 = 81,   then G  is isomorphic to

PSL(2, 81),  and

(2) G cannot have degree equation   1 + 125 = 126.

Proof.   As usual, let  x2 £ CiS^, x    £ CÍS A,  x    £ CÍS A,  and  x? £ CÍSA.

When the degree equation is   1 + 80 = 81,  the coefficients  aix., x., x ),  2 = 2, 5,

7,  the relations above  (2.1) and Lemma 3,2 yield   |G| = 2a345c7dp,  where  a < 10

and even,  c < 5  and odd,  d < 4 and even and p = 79 or 4L  If  c = 5, the
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coefficient  a(x , xy x) implies that  X80(XJ = ~45,  and then (x80 1^5)' lix J-

< 0,   a contradiction.   Now a count of  S     subgroups yields

\G\ = 2434579,  2I0345341,  2*345 4T,    or    2434537441.

In the first two cases, Lemma 3.6 leads to a contradiction, and in the third case

Lemma 3.6 implies that  G  is isomorphic to PSL(2, 81).   In the last case, the coef-

ficient  a(xy, x7, x41) yields   X8(/X7^ = ^l> ~ 18   or ~ ^7*   NoW  ^X^*?) >

|C(x_)|,  a contradiction, when  Xao^x7^~ ^"  ^nen  Xar^x-^ ~ ~ ^ or ~ 67,

(xB0\(x7),   l(x )) < 0,  also a contradiction.

It is an easy mattet to verify that PSL(2, 81) satisfies hypotheses I and II.

This proves (1).

When the degree equation is   1 + 125 = 126,  the coefficients   a(x., x., x ),

i = 2, 3, 7,  the relations above (2.1), and Lemma 3.2 yield   |G| = 2  3  5  7 p, where

a < 13 and odd,   b < 8 and even,  d < 3 and odd, and p = 127 or 31.   If p - 127,

the work [l l] of Feit leads to a contradiction.   If p = 31, a count of S      subgroups

yields |G| = 2U32537 31,   273853731,   or  2U3653733L  In the first case, con-

sideration of a(x     x , x,A yields  Sy (x A > |C(x )|,  a contradiction.   In the

second case, the coefficient  a(x , x , x   A yields  y,.Jx ) = - 118.   But then

(X125KX3),   l(x}))<0,  a contradiction.  When   |G| = 2 U36537331,   Lemma 3.4, the

coefficients  a(x2> x2, x    )  and a(x     x     *, ,)>  and the fact that  X125  *s °^ defect

0 for the ptime 5 yield

(3.8) |C(x5)|/327 53.

Furthermore, (3.8) holds for any 5-element,  x  .    Let y7  be an element of order 7

in  C(xA.  Consider (y-¡x ) = H of order 35.  Since  (y.      |„,   1„)  is a nonnegative

integer,   Xi2Ay-¡) = 20 (mod 35).  Now the coefficient  a(y  , y  , x   A  yields

~2x (y-j) > |C(y7)|,  a contradiction.   Thus  7'f|C(x )|,  for any  5-element,   x     Thus

an  S    of  C(x A is normal in   C(x ).  Thus the set of S    subgroups of  G is a T.I.

set.   Thus the number of S  's in  G is congruent to 1 modulo 125.   Thus \N(S )\ =

2 735  .   But then there is an element,  27, of order 7 in  N(SA so that 53/|C(z )|.

The coefficient  a(z7, z_, x,,) now leads to a contradiction.   This proves (2).

Lemma 3.13.   // G  is a simple group satisfying hypotheses I and II, then

(1) G  cannot have degree equation   1 + 224 = 225;

(2) G cannot have degree equation  1 + 2400 = 2401  and

(3) G cannot have degree equation   1 + 4374 = 4375.

Proof. As usual, let x. £ C(S), i = 2, 3, 5 and 7. When the degree equation

is 1 + 224 = 225, the coefficients a(x., x., x ), j = 2, 3, 5, 7, and the relations

above (2,1) yield   |G| = 2a3b5°7dp,  where  a < 11 and odd,   b < 8 and even, c < 4
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and even,  d < 5  and odd, and p = 223  or   113.  A count of S    subgroups yields

\G\ = 2532527223  or  27345475113.   In the former case, Lemma 3.1 applied to

B  (7)nBQ(223)  implies that  BQ(7) contains the 111 characters of degree 225,

which is absurd.   In the latter case, the coefficient  a(x7, x^, *113) yields

X225(^7) = - 118 so that  (x225^x7^'   1(^7^ <0>  a contradiction.   This proves (1).

When the degree equation is   1 + 2400 = 2401,  the coefficients  a(x., x., x ),
7,       h      f      A

j = 2, 3, 5,  the relations  above (2.1) and Lemma 3.2 yield  \G\ = 2  3  5  7 p, where

a < 19 and odd,  b < 13 and odd,   c < 8 and even, and  p = 2399  or   1201.  Next a

count of S    subgroups yields   |G| = 2 ' 53356742399,  2133356741201,

253 52742399,  or 253 52741201.  In the first two cases the coefficient aix^ x? x )

implies that Sy  (x ) > |C(x )|,  a contradiction.  In the third case, Lemma 3.1

applied to  BQ(3) n Bn(2399)  implies that the 1199 characters of degree 2401 are

in  BQ(3),  which is absurd.   In the final case, application of Lemma 3.1 to  B„(3)n

B.(1201) implies that  ßn(3)  contains a character of degree 2402.   But then

^X (1) > |G|,  a contradiction.   This proves (2).

Finally if the degree equation is   1 + 4374 = 4375,  the coefficients

a(x¿, x., x ),  i = 2, 3, 5, 7, and the relations above (2.1) yield   |G| = 2a3b5c7dp,

where  a < 25  and odd,   b < 9  and odd,   c < 6 and even,  d < 3  and odd and p =

4373 or  547.  When p = 4373,   if b = 9 then the coefficient  aixy x?< x       A

implies that   S y  (x ) > |C(x  )|,  a contradiction.   Then a count of S sub-

groups of G yields no choices for  |G|. When  p = 547,  if d = 1, then Lemma 3.1

applied to  B_(7) C\ B  (547) implies that the 273 characters of degree 4374 are in

B  (7),  a contradiction.  Then a count of  J,,.  subgroups of G yields no choices

for  |G|.  This proves (3).

We have now considered all of the possible degree equations which result

from the solutions listed in §2, and we have used them to show that PSL(2, 5),

PSL(2, 7), PSL(2,9), PSL(2, 8), PSL(2, 16), PSL(2, 25), PSL(2, 27), PSL(2, 81)

and PSL(3, 4) are the only simple groups which satisfy hypotheses I and II.
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