Simple groups of order $2^{a}3^{b}5^{c}7^{d}p$
HTML articles powered by AMS MathViewer
- by Leo J. Alex
- Trans. Amer. Math. Soc. 173 (1972), 389-399
- DOI: https://doi.org/10.1090/S0002-9947-1972-0318291-1
- PDF | Request permission
Abstract:
Let ${\operatorname {PSL}}(n,q)$ denote the projective special linear group of degree $n$ over ${\text {GF}}(q)$, the field with $q$ elements. The following theorem is proved. Theorem. Let $G$ be a simple group of order ${2^a}{3^b}{5^c}{7^d}p,a > 0,p$ an odd prime. If the index of a Sylow $p$-subgroup of $G$ in its normalizer is two, then $G$ is isomorphic to one of the groups, ${\operatorname {PSL}}(2,5),{\operatorname {PSL}}(2,7),{\operatorname {PSL}}(2,9),{\operatorname {PSL}}((2,8),{\operatorname {PSL}}(2,16),{\operatorname {PSL}}(2,25),{\operatorname {PSL}}(2,27),{\operatorname {PSL}}(2,81)$, and ${\operatorname {PSL}}(3,4)$.References
- Leo J. Alex, On simple groups of order ${2^a}{3^b}{7^c}p$, J. Algebra (to appear).
—, Some exponential Diophantine equations which arise in finite groups (to appear).
H. L. Blichfeldt, Finite collineation groups, Univ. of Chicage Press, Chicago, Ill., 1917.
- Richard Brauer, On simple groups of order $5\cdot 3^{a}\cdot 2^{b}$, Bull. Amer. Math. Soc. 74 (1968), 900–903. MR 236255, DOI 10.1090/S0002-9904-1968-12073-7
- Richard Brauer, On groups whose order contains a prime number to the first power. I, Amer. J. Math. 64 (1942), 401–420. MR 6537, DOI 10.2307/2371693
- Richard Brauer, Über endliche lineare Gruppen von Primzahlgrad, Math. Ann. 169 (1967), 73–96 (German). MR 206088, DOI 10.1007/BF01399532
- Richard Brauer and K. A. Fowler, On groups of even order, Ann. of Math. (2) 62 (1955), 565–583. MR 74414, DOI 10.2307/1970080
- Richard Brauer and Michio Suzuki, On finite groups of even order whose $2$-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1757–1759. MR 109846, DOI 10.1073/pnas.45.12.1757
- Richard Brauer and Hsio-Fu Tuan, On simple groups of finite order. I, Bull. Amer. Math. Soc. 51 (1945), 756–766. MR 15102, DOI 10.1090/S0002-9904-1945-08441-9
- Walter Feit, The current situation in the theory of finite simple groups, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 55–93. MR 0427449
- Walter Feit, On finite linear groups, J. Algebra 5 (1967), 378–400. MR 207818, DOI 10.1016/0021-8693(67)90049-X
- Daniel Gorenstein, Finite groups in which Sylow $2$-subgroups are abelian and centralizers of involutions are solvable, Canadian J. Math. 17 (1965), 860–906. MR 190221, DOI 10.4153/CJM-1965-085-x Daniel Gorenstein and J. H. Walter, The characterization of finite groups with dihedral Sylow $2$-subgroups. I, II, III, J. Algebra 2 (1965), 85-151; 218-270; 354-393. MR 31 #1297a, b; MR 32 #7634.
- D. H. Lehmer, On a problem of Störmer, Illinois J. Math. 8 (1964), 57–79. MR 158849, DOI 10.1215/ijm/1256067456 David Mutchler, On simple groups of order ${2^a}{3^b}{5^c}p$ (unpublished).
- Michio Suzuki, Finite groups in which the centralizer of any element of order $2$ is $2$-closed, Ann. of Math. (2) 82 (1965), 191–212. MR 183773, DOI 10.2307/1970569
- David B. Wales, Finite linear groups of degree seven. II, Pacific J. Math. 34 (1970), 207–235. MR 267016, DOI 10.2140/pjm.1970.34.207
- David Wales, Simple groups of order $7\cdot 3^{a}\cdot 2^{b}$, J. Algebra 16 (1970), 575–596. MR 268270, DOI 10.1016/0021-8693(70)90009-8
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 173 (1972), 389-399
- MSC: Primary 20D05
- DOI: https://doi.org/10.1090/S0002-9947-1972-0318291-1
- MathSciNet review: 0318291