Automorphisms of $\omega _{1}$-trees
HTML articles powered by AMS MathViewer
- by Thomas J. Jech
- Trans. Amer. Math. Soc. 173 (1972), 57-70
- DOI: https://doi.org/10.1090/S0002-9947-1972-0347605-1
- PDF | Request permission
Abstract:
The number of automorphisms of a normal ${\omega _1}$-tree $T$, denoted by $\sigma (T)$, is either finite or ${2^{{\aleph _0}}} \leqslant \sigma (T) \leqslant {2^{{\aleph _1}}}$. Moreover, if $\sigma (T)$ is infinite then $\sigma {(T)^{{\aleph _0}}} = \sigma (T)$. Moreover, if $T$ has no Suslin subtree then $\sigma (T)$ is finite or $\sigma (T) = {2^{{\aleph _0}}}$ or $\sigma (T) = {2^{{\aleph _1}}}$. It is consistent that there is a Suslin tree with arbitrary precribed $\sigma (T)$ between ${2^{{\aleph _0}}}$ and ${2^{{\aleph _1}}}$, subject to the restriction above; e.g. ${2^{{\aleph _0}}} = {\aleph _1},{2^{{\aleph _1}}} = {\aleph _{324}}$ and $\sigma (T) = {\aleph _{17}}$. We prove related results for Kurepa trees and isomorphism types of trees. We use Cohen’s method of forcing and Jensen’s techniques in $L$.References
- Haim Gaifman and E. P. Specker, Isomorphism types of trees, Proc. Amer. Math. Soc. 15 (1964), 1–7. MR 168484, DOI 10.1090/S0002-9939-1964-0168484-2
- Tomáš Jech, Non-provability of Souslin’s hypothesis, Comment. Math. Univ. Carolinae 8 (1967), 291–305. MR 215729
- Thomas J. Jech, Trees, J. Symbolic Logic 36 (1971), 1–14. MR 284331, DOI 10.2307/2271510 —, Isomorphism types of trees, Preliminary Report, Notices Amer. Math. Soc. 17 (1970), 673. Abstract #70T-E39. R. B. Jensen, Souslin’s hypothesis is incompatible with $V = L$, Notices Amer. Math. Soc. 15 (1968), 935. Abstract #68T-E31. —, Automorphism properties of Souslin continua, Notices Amer. Math. Soc. 16 (1969), 576. Abstract #69T-E24. —, Souslin’s hypothesis is compatible with CH (mimeographed). —, Some combinatorial properties of $L$ and $V$ (mimeographed). D. Kurepa, Ensembles ordonnés et ramifiés, Publ. Math. Univ. Belgrade 4 (1935), 1-138.
- Edward Marczewski, Séparabilité et multiplication cartésienne des espaces topologiques, Fund. Math. 34 (1947), 127–143 (French). MR 21680, DOI 10.4064/fm-34-1-127-143
- Jack Silver, The independence of Kurepa’s conjecture and two-cardinal conjectures in model theory, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 383–390. MR 0277379 R. M. Solovay, to be published. R. M. Solovay and S. Tennenbaum, Iterated Cohen extensions and Suslin’s problem (mimeographed). D. H. Stewart, M. Sc. Thesis, Bristol, 1966.
- S. Tennenbaum, Souslin’s problem, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 60–63. MR 224456, DOI 10.1073/pnas.59.1.60
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 173 (1972), 57-70
- MSC: Primary 02K30
- DOI: https://doi.org/10.1090/S0002-9947-1972-0347605-1
- MathSciNet review: 0347605