Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Generalized eigenfunctions and real axis limits of the resolvent
HTML articles powered by AMS MathViewer

by N. A. Derzko PDF
Trans. Amer. Math. Soc. 174 (1972), 489-506 Request permission

Abstract:

Let $(\mathcal {H},( \cdot , \cdot ))$ be a Hilbert space and A, E be a selfadjoint operator and corresponding spectral measure in $\mathcal {H}\;(A = \smallint \lambda E(d\lambda ))$. It is known that for a suitable positive subspace ${\mathcal {H}_ + } \subset \mathcal {H}$ and measure $\rho$ the generalized eigenfunctions \[ {\phi _{\lambda ,f}} = \lim \limits _{h \to 0} \frac {{E(\left [ {\lambda - h,\lambda + h} \right ])f}}{{\rho (\left [ {\lambda - h,\lambda + h} \right ])}} \equiv \lim \limits _{\Delta \to \lambda } \frac {{E(\Delta )f}}{{\rho (\Delta )}}\] exist in ${\mathcal {H}_ - }$, the corresponding negative space, for $\rho$-almost every $\lambda$ and $f \in {\mathcal {H}_ + }$. It is shown that for each $\lambda$ the ${\phi _{\lambda ,f}}$ form a pre-Hilbert space ${\mathcal {H}_\lambda }$ using the natural inner product ${({\phi _f},{\phi _g})_\lambda } = {\lim _{\Delta \to \lambda }}((E(\Delta )f,g)/\rho (\Delta ))$, and that $\left \| \phi \right \| - \leq C{\left \| \phi \right \|_\lambda }$. Furthermore, if $\{ \phi (\lambda ,\alpha )\}$ is a suitably chosen basis for ${\mathcal {H}_\lambda }, - \infty < \lambda < \infty$, then one obtains the eigenfunction expansion suggested by \[ (f,g) = \int {\rho (d\lambda )\;\sum \limits _{\alpha ,\beta } {(f,\phi (\lambda ,\alpha )){\sigma _{\alpha \beta }}(\lambda )\overline {(g,\phi (\lambda ,\beta )).}} } \]. Finally it is shown that, for a suitable function $w(\varepsilon ,\lambda ),{\phi _{\lambda ,f}}$ is given by ${\lim _{\varepsilon \downarrow 0}}w(\varepsilon ,\lambda )[R(\lambda - i\varepsilon ) - R(\lambda + i\varepsilon )]f$, where $R(z) = {(z - A)^{ - 1}}$.
References
  • Ju. M. Berezans′kiĭ, Expansions in eigenfunctions of selfadjoint operators, Translations of Mathematical Monographs, Vol. 17, American Mathematical Society, Providence, R.I., 1968. Translated from the Russian by R. Bolstein, J. M. Danskin, J. Rovnyak and L. Shulman. MR 0222718
  • Ju. M. Berezans′kiĭ, Spaces with negative norm, Uspehi Mat. Nauk 18 (1963), no. 1 (109), 63–96 (Russian). MR 0164254
  • Yu. M. Berezanski, On an eigenfunction expansion for self-adjoint operators, Ukrain. Mat. Ž. 11 (1959), 16–24 (Russian, with English summary). MR 0123189
  • Yu. M. Berezanski, Eigenfunction expansions of self-adjoint operators, Mat. Sb. N.S. 43(85) (1957), 75–126 (Russian). MR 0104895
  • Felix E. Browder, Eigenfunction expansions for formally self-adjoint partial differential operators. I, II, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 769–771, 870–872. MR 92091, DOI 10.1073/pnas.42.11.870
  • Felix E. Browder, The eigenfunction expansion theorem for the general self-adjoint singular elliptic partial differential operator. I. The analytical foundation, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 454–459. MR 63535, DOI 10.1073/pnas.40.6.454
  • Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
  • Lars Gȧrding, Eigenfunction expansions, Partial Differential Equations (Proc. Summer Seminar, Boulder, Col., 1957), Interscience, New York, 1964, pp. 301–325. MR 0165236
  • Lars Gårding, Eigenfunction expansions connected with elliptic differential operators, Tolfte Skandinaviska Matematikerkongressen, Lund, 1953, Lunds Universitets Matematiska Institution, Lund, 1954, pp. 44–55. MR 0071625
  • Eberhard Gerlach, On spectral representation for selfadjoint operators. Expansion in generalized eigenelements, Ann. Inst. Fourier (Grenoble) 15 (1965), no. fasc. 2, 537–574. MR 190762
  • Miguel de Guzmán, A covering lemma with applications to differentiability of measures and singular integral operators, Studia Math. 34 (1970), 299–317. (errata insert). MR 264022, DOI 10.4064/sm-34-3-299-317
  • G. I. Kac, Spectral decompositions of self-adjoint operators in terms of generalized elements of a Hilbert space, Ukrain. Mat. Ž. 13 (1961), no. 4, 13–33 (Russian, with English summary). MR 0144217
  • G. I. Kac, Expansion in characteristic functions of self-adjoint operators, Dokl. Akad. Nauk SSSR (N.S.) 119 (1958), 19–22 (Russian). MR 0104896
  • Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
  • Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210528
  • S. Saks, Théorie de l’intégrale, Monografie Mat., vol. 7, PWN, Warsaw, 1937.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 47A70
  • Retrieve articles in all journals with MSC: 47A70
Additional Information
  • © Copyright 1972 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 174 (1972), 489-506
  • MSC: Primary 47A70
  • DOI: https://doi.org/10.1090/S0002-9947-1972-0310684-1
  • MathSciNet review: 0310684