Strictly regular elements in Freudenthal triple systems
HTML articles powered by AMS MathViewer
- by J. C. Ferrar
- Trans. Amer. Math. Soc. 174 (1972), 313-331
- DOI: https://doi.org/10.1090/S0002-9947-1972-0374223-1
- PDF | Request permission
Abstract:
Strictly regular elements play a role in the structure theory of Freudenthal triple systems analogous to that played by idempotents in nonassociative algebras with identity. In this paper we study the coordinatization of reduced triple systems relative to a connected pair of strictly regular elements and use the explicit form of strictly regular elements in terms of the coordinatization to prove uniqueness of the coordinatizing Jordan algebra, as well as several generalizations of known results regarding groups of transformations related to triple systems. Finally, we classify forms of a particularly important triple system (the representation module for the Lie algebra ${E_7}$) over finite, p-adic or real fields.References
- Robert B. Brown, Groups of type $E_{7}$, J. Reine Angew. Math. 236 (1969), 79–102. MR 248185, DOI 10.1515/crll.1969.236.79
- John R. Faulkner, A construction of Lie algebras from a class of ternary algebras, Trans. Amer. Math. Soc. 155 (1971), 397–408. MR 294424, DOI 10.1090/S0002-9947-1971-0294424-X
- John R. Faulkner, A geometry for $E_{7}$, Trans. Amer. Math. Soc. 167 (1972), 49–58. MR 295205, DOI 10.1090/S0002-9947-1972-0295205-4
- John R. Faulkner, Octonion planes defined by quadratic Jordan algebras, Memoirs of the American Mathematical Society, No. 104, American Mathematical Society, Providence, R.I., 1970. MR 0271180
- John R. Faulkner and Joseph C. Ferrar, On the structure of symplectic ternary algebras, Nederl. Akad. Wetensch. Proc. Ser. A 75=Indag. Math. 34 (1972), 247–256. MR 0308230
- J. C. Ferrar, Lie algebras of type $E_{6}$, J. Algebra 13 (1969), 57–72. MR 263881, DOI 10.1016/0021-8693(69)90006-4
- Hans Freudenthal, Beziehungen der $E_7$ und $E_8$ zur Oktavenebene. I, Nederl. Akad. Wetensch. Proc. Ser. A. 57 = Indagationes Math. 16 (1954), 218–230 (German). MR 0063358
- N. Jacobson, Forms of algebras, Some Recent Advances in the Basic Sciences, Vol. 1 (Proc. Annual Sci. Conf., Belfer Grad. School Sci., Yeshiva Univ., New York, 1962-1964) Yeshiva Univ., Belfer Graduate School of Science, New York, 1966, pp. 41–71. MR 0214628
- Kurt Meyberg, Eine Theorie der Freudenthalschen Tripelsysteme. I, II, Nederl. Akad. Wetensch. Proc. Ser. A 71=Indag. Math. 30 (1968), 162–174, 175–190 (German). MR 0225838
- Kevin McCrimmon, The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras, Trans. Amer. Math. Soc. 139 (1969), 495–510. MR 238916, DOI 10.1090/S0002-9947-1969-0238916-9
- T. A. Springer, Characterization of a class of cubic forms, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24 (1962), 259–265. MR 0138661
- T. A. Springer, On a class of Jordan algebras, Nederl. Akad. Wetensch. Proc. Ser. A 62 = Indag. Math. 21 (1959), 254–264. MR 0110739
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 174 (1972), 313-331
- MSC: Primary 17E05; Secondary 08A05
- DOI: https://doi.org/10.1090/S0002-9947-1972-0374223-1
- MathSciNet review: 0374223