## Modular permutation representations

HTML articles powered by AMS MathViewer

- by L. L. Scott
- Trans. Amer. Math. Soc.
**175**(1973), 101-121 - DOI: https://doi.org/10.1090/S0002-9947-1973-0310051-1
- PDF | Request permission

## Abstract:

A modular theory for permutation representations and their centralizer rings is presented, analogous in several respects to the classical work of Brauer on group algebras. Some principal ingredients of the theory are characters of indecomposable components of the permutation module over a*p*-adic ring, modular characters of the centralizer ring, and the action of normalizers of

*p*-subgroups

*P*on the fixed points of

*P*. A detailed summary appears in [15]. A main consequence of the theory is simplification of the problem of computing the ordinary character table of a given centralizer ring. Also, some previously unsuspected properties of permutation characters emerge. Finally, the theory provides new insight into the relation of Brauer’s theory of blocks to Green’s work on indecomposable modules.

## References

- A. Adrian Albert,
*Structure of algebras*, American Mathematical Society Colloquium Publications, Vol. XXIV, American Mathematical Society, Providence, R.I., 1961. Revised printing. MR**0123587** - Emil Artin, Cecil J. Nesbitt, and Robert M. Thrall,
*Rings with Minimum Condition*, University of Michigan Publications in Mathematics, no. 1, University of Michigan Press, Ann Arbor, Mich., 1944. MR**0010543** - Richard Brauer,
*Zur Darstellungstheorie der Gruppen endlicher Ordnung. II*, Math. Z.**72**(1959/60), 25–46 (German). MR**108542**, DOI 10.1007/BF01162934 - Charles W. Curtis and Irving Reiner,
*Representation theory of finite groups and associative algebras*, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR**0144979** - Walter Feit,
*Some properties of the Green correspondence*, Theory of Finite Groups (Symposium, Harvard Univ., Cambridge, Mass., 1968) Benjamin, New York, 1969, pp. 139–148. MR**0242968** - Walter Feit,
*Characters of finite groups*, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR**0219636** - J. A. Green,
*Blocks of modular representations*, Math. Z.**79**(1962), 100–115. MR**141717**, DOI 10.1007/BF01193108 - J. A. Green,
*A transfer theorem for modular representations*, J. Algebra**1**(1964), 73–84. MR**162843**, DOI 10.1016/0021-8693(64)90009-2 - James A. Green,
*Some remarks on defect groups*, Math. Z.**107**(1968), 133–150. MR**233901**, DOI 10.1007/BF01111026 - D. G. Higman,
*Modules with a group of operators*, Duke Math. J.**21**(1954), 369–376. MR**67895** - D. G. Higman,
*Intersection matrices for finite permutation groups*, J. Algebra**6**(1967), 22–42. MR**209346**, DOI 10.1016/0021-8693(67)90011-7 - Gordon Keller,
*Concerning the degrees of irreducible characters*, Math. Z.**107**(1968), 221–224. MR**235050**, DOI 10.1007/BF01110260
L. L. Scott, - L. Scott,
*The modular theory of permutation representations*, Representation theory of finite groups and related topics (Proc. Sympos. Pure Math., Vol. XXI, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 137–144. MR**0320133**
O. Tamaschke, - Edwin Weiss,
*Algebraic number theory*, McGraw-Hill Book Co., Inc., New York-San Francisco-Toronto-London, 1963. MR**0159805** - Helmut Wielandt,
*Finite permutation groups*, Academic Press, New York-London, 1964. Translated from the German by R. Bercov. MR**0183775**

*Uniprimitive groups of degree*$kp$, Ph. D. Thesis, Yale University, New Haven, Conn., 1968. —,

*Uniprimitive permutation groups*, Theory of Finite Groups, (Sympos., Harvard Univ., Cambridge, Mass., 1968), Benjamin, New York, 1969), pp. 55-62.

*A generalized character theory on finite groups*, Proc. Internat. Conf. Theory of Groups, Austral. Nat. U. Canberra, August 1965, New York, 1967, pp. 347-355.

## Bibliographic Information

- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**175**(1973), 101-121 - MSC: Primary 20C20
- DOI: https://doi.org/10.1090/S0002-9947-1973-0310051-1
- MathSciNet review: 0310051