Lower semicontinuity of parametric integrals
HTML articles powered by AMS MathViewer
- by Edward Silverman
- Trans. Amer. Math. Soc. 175 (1973), 499-508
- DOI: https://doi.org/10.1090/S0002-9947-1973-0310744-6
- PDF | Request permission
Abstract:
It has been known for a long time that the usual two-dimensional parametric integrals in three-space are lower semicontinuous with respect to uniform convergence. In an earlier paper we saw that an easy argument extends this result to all parametric integrals generated by simply-convex integrands, with no restrictions on the dimension of the surfaces or the containing space. By using these techniques again, and generalizing to surfaces a result concerning convergent sequences of closed curves we show that a parametric integral generated by a parametric integrand which is convex in the Jacobians is lower semicontinuous with respect to uniform convergence provided all of the functions lie in a bounded subset of the Sobolev space $H_s^1$ where $s + 1$ exceeds the dimension of the parametric integral.References
- P. S. Aleksandrov and H. Hopf, Topologie, Springer, Berlin, 1935.
- Lamberto Cesari, Condizioni necessarie per la semicontinuità degli integrali sopra una superficie in forma parametrica, Ann. Mat. Pura Appl. (4) 29 (1949), 199–224 (Italian). MR 36294, DOI 10.1007/BF02413927
- Lamberto Cesari, An existence theorem of calculus of variations for integrals on parametric surfaces, Amer. J. Math. 74 (1952), 265–295. MR 50187, DOI 10.2307/2371993 —, Surface area, Ann. of Math. Studies, no. 35, Princeton Univ. Press, Princeton, N. J., 1956. MR 17, 596.
- John M. Danskin Jr., On the existence of minimizing surfaces in parametric double integral problems of the calculus of variations, Riv. Mat. Univ. Parma 3 (1952), 43–63. MR 50186
- Herbert Federer, Essential multiplicity and Lebesgue area, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 611–616. MR 27837, DOI 10.1073/pnas.34.12.611
- Casper Goffman and William P. Ziemer, Higher dimensional mappings for which the area formula holds, Ann. of Math. (2) 92 (1970), 482–488. MR 271283, DOI 10.2307/1970629
- L. H. Loomis and H. Whitney, An inequality related to the isoperimetric inequality, Bull. Amer. Math. Soc. 55 (1949), 961–962. MR 0031538, DOI 10.1090/S0002-9904-1949-09320-5
- E. J. McShane, On the semi-continuity of double integrals in the calculus of variations, Ann. of Math. (2) 33 (1932), no. 3, 460–484. MR 1503070, DOI 10.2307/1968529
- Charles B. Morrey Jr., The parametric variational problem for double integrals, Comm. Pure Appl. Math. 14 (1961), 569–575. MR 131790, DOI 10.1002/cpa.3160140328
- Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 0202511
- T. Rado and P. V. Reichelderfer, Continuous transformations in analysis. With an introduction to algebraic topology, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band LXXV, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955. MR 0079620
- A. G. Sigalov, Two-dimensional problems of the calculus of variations, Uspehi Matem. Nauk (N.S.) 6 (1951), no. 2(42), 16–101 (Russian). MR 0043400
- Edward Silverman, A problem of least area, Pacific J. Math. 14 (1964), 309–331. MR 170996
- Edward Silverman, Simple areas, Pacific J. Math. 15 (1965), 299–303. MR 177321
- Edward Silverman, A sufficient condition for the lower semicontinuity of parametric integrals, Trans. Amer. Math. Soc. 167 (1972), 465–469. MR 296785, DOI 10.1090/S0002-9947-1972-0296785-5
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 175 (1973), 499-508
- MSC: Primary 49F20; Secondary 49A50
- DOI: https://doi.org/10.1090/S0002-9947-1973-0310744-6
- MathSciNet review: 0310744