Embedding theorems and generalized discrete ordered abelian groups
HTML articles powered by AMS MathViewer
- by Paul Hill and Joe L. Mott
- Trans. Amer. Math. Soc. 175 (1973), 283-297
- DOI: https://doi.org/10.1090/S0002-9947-1973-0311540-6
- PDF | Request permission
Abstract:
Let G be a totally ordered commutative group. For each nonzero element $g \in G$, let $L(g)$ denote the largest convex subgroup of G not containing g. Denote by $U(g)$ the smallest convex subgroup of G that contains g. The group G is said to be generalized discrete if $U(g)/L(g)$ is order isomorphic to the additive group of integers for all $g \ne 0$ in G. This paper is principally concerned with the structure of generalized discrete groups. In particular, the problem of embedding a generalized discrete group in the lexicographic product of its components, $U(g)/L(g)$, is studied. We prove that such an embedding is not always possible (contrary to statements in the literature). However, we do establish the validity of this embedding when G is countable. In case F is o-separable as well as countable, the structure of G is completely determined.References
- Shreeram Abhyankar, Ramification theoretic methods in algebraic geometry, Annals of Mathematics Studies, No. 43, Princeton University Press, Princeton, N.J., 1959. MR 0105416
- Reinhold Baer, Abelian groups without elements of finite order, Duke Math. J. 3 (1937), no. 1, 68–122. MR 1545974, DOI 10.1215/S0012-7094-37-00308-9
- Bernhard Banaschewski, Totalgeordnete Moduln, Arch. Math. 7 (1957), 430–440 (German). MR 87650, DOI 10.1007/BF01899022
- H. S. Butts and Robert W. Gilmer Jr., Primary ideals and prime power ideals, Canadian J. Math. 18 (1966), 1183–1195. MR 224605, DOI 10.4153/CJM-1966-117-9
- A. H. Clifford, Note on Hahn’s theorem on ordered abelian groups, Proc. Amer. Math. Soc. 5 (1954), 860–863. MR 67882, DOI 10.1090/S0002-9939-1954-0067882-9
- Paul F. Conrad, Embedding theorems for abelian groups with valuations, Amer. J. Math. 75 (1953), 1–29. MR 53933, DOI 10.2307/2372611
- Paul Conrad, A note on valued linear spaces, Proc. Amer. Math. Soc. 9 (1958), 646–647. MR 99368, DOI 10.1090/S0002-9939-1958-0099368-3
- Paul Conrad, Representation of partially ordered abelian groups as groups of real valued functions, Acta Math. 116 (1966), 199–221. MR 201536
- Paul Conrad, John Harvey, and Charles Holland, The Hahn embedding theorem for abelian lattice-ordered groups, Trans. Amer. Math. Soc. 108 (1963), 143–169. MR 151534, DOI 10.1090/S0002-9947-1963-0151534-0
- L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963. MR 0171864 —, Abelian groups, Internat. Series of Monographs on Pure and Appl. Math., Pergamon Press, New York, I960. MR 22 #2644.
- Robert W. Gilmer, Multiplicative ideal theory, Queen’s Papers in Pure and Applied Mathematics, No. 12, Queen’s University, Kingston, Ont., 1968. MR 0229624
- K. A. H. Gravett, Ordered abelian groups, Quart. J. Math. Oxford Ser. (2) 7 (1956), 57–63. MR 91955, DOI 10.1093/qmath/7.1.57 H. Hahn, Über die nichtarchimedischen Grossensysteme, S.-B. Akad. Wiss. Wien. IIa 116 (1907), 601-655.
- M. Hausner and J. G. Wendel, Ordered vector spaces, Proc. Amer. Math. Soc. 3 (1952), 977–982. MR 52045, DOI 10.1090/S0002-9939-1952-0052045-1
- Paul Hill, On the freeness of abelian groups: A generalization of Pontryagin’s theorem, Bull. Amer. Math. Soc. 76 (1970), 1118–1120. MR 263919, DOI 10.1090/S0002-9904-1970-12586-1
- Kenkichi Iwasawa, On linearly ordered groups, J. Math. Soc. Japan 1 (1948), 1–9. MR 28313, DOI 10.2969/jmsj/00110001
- F. Loonstra, Discrete groups, Nederl. Akad. Wetensch. Proc. Ser. A. 54 = Indagationes Math. 13 (1951), 162–168. MR 0041866
- R. J. Nunke, Slender groups, Acta Sci. Math. (Szeged) 23 (1962), 67–73. MR 144968
- Paulo Ribenboim, Sur les groupes totalement ordonnés et l’arithmétique des anneaux de valuation, Summa Brasil. Math. 4 (1958), 1–64 (French). MR 107673 —, Théorie des groupes ordonnés, University Press, Bahia Blanca, Argentina, 1959.
- N. Sankaran, Classification of totally ordered abelian groups, J. Indian Math. Soc. (N.S.) 29 (1965), 9–29. MR 188309
- N. Sankaran and R. Venkataraman, A generalization of the ordered group of integers, Math. Z. 79 (1962), 21–31. MR 137775, DOI 10.1007/BF01193102
- Abraham Robinson and Elias Zakon, Elementary properties of ordered abelian groups, Trans. Amer. Math. Soc. 96 (1960), 222–236. MR 114855, DOI 10.1090/S0002-9947-1960-0114855-0
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 175 (1973), 283-297
- MSC: Primary 06A60
- DOI: https://doi.org/10.1090/S0002-9947-1973-0311540-6
- MathSciNet review: 0311540