Class numbers of totally imaginary quadratic extensions of totally real fields
HTML articles powered by AMS MathViewer
- by Judith S. Sunley
- Trans. Amer. Math. Soc. 175 (1973), 209-232
- DOI: https://doi.org/10.1090/S0002-9947-1973-0311622-9
- PDF | Request permission
Abstract:
Let K be a totally real algebraic number field. This paper provides an effective constant $C(K,h)$ such that every totally imaginary quadratic extension L of K with ${h_L} = h$ satisfies $|{d_L}| < C(K,h)$ with at most one possible exception. This bound is obtained through the determination of a lower bound for $L(1,\chi )$ where $\chi$ is the ideal character of K associated to L. Results of Rademacher concerning estimation of L-functions near $s = 1$ are used to determine this lower bound. The techniques of Tatuzawa are used in the proof of the main theorem.References
- A. Baker, Imaginary quadratic fields with class number $2$, Ann. of Math. (2) 94 (1971), 139–152. MR 299583, DOI 10.2307/1970739
- A. I. Borevich and I. R. Shafarevich, Number theory, Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. Translated from the Russian by Newcomb Greenleaf. MR 0195803
- T. Estermann, On Dirichlet’s $L$ functions, J. London Math. Soc. 23 (1948), 275–279. MR 27797, DOI 10.1112/jlms/s1-23.4.275
- Carl Friedrich Gauss, Disquisitiones arithmeticae, Yale University Press, New Haven, Conn.-London, 1966. Translated into English by Arthur A. Clarke, S. J. MR 0197380
- Larry Joel Goldstein, A generalization of Stark’s theorem, J. Number Theory 3 (1971), 323–346. MR 289456, DOI 10.1016/0022-314X(71)90008-4
- Larry Joel Goldstein, Imaginary quadratic fields of class number $2$, J. Number Theory 4 (1972), 286–301. MR 299587, DOI 10.1016/0022-314X(72)90056-X
- Larry Joel Goldstein, Relative imaginary quadratic fields of class number $1$ or $2$, Trans. Amer. Math. Soc. 165 (1972), 353–364. MR 291124, DOI 10.1090/S0002-9947-1972-0291124-8
- E. Grosswald, Negative discriminants of binary quadratic forms with one class in each genus, Acta Arith. 8 (1962/63), 295–306. MR 156820, DOI 10.4064/aa-8-3-295-306 E. Hecke, Bestimmung der Klassenzahl einer neuen Reihe von algebraischen Zahlkörpern, Göttinger Nachr. 1921. H. Heilbronn and E. H. Linfoot, On the imaginary quadratic corpora of class number one, Quart. J. Math. Oxford Ser. 5 (1934), 293-301. E. Landau, Einführung in die Elementare und Analytische Theorie der Algebraischen Zahlen und der Ideale, 2nd ed., Teubner, Leipzig, 1927. —, Verallgemeinerung eines Polyaschen Satzes auf algebrasche Zahlkörpern, Göttinger Nachr. 1918, 478-488.
- Serge Lang, Algebraic numbers, Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto-London, 1964. MR 0160763
- Hans Rademacher, On the Phragmén-Lindelöf theorem and some applications, Math. Z. 72 (1959/1960), 192–204. MR 0117200, DOI 10.1007/BF01162949 K. Reidemeister, Über die Relativklassenzahl gewisser relativquadratis cher Zahlkörper, Abh. Math. Sem. Univ. Hamburg 1 (1921), 27-48.
- Carl Ludwig Siegel, Lectures on advanced analytic number theory, Tata Institute of Fundamental Research Lectures on Mathematics, No. 23, Tata Institute of Fundamental Research, Bombay, 1965. Notes by S. Raghavan. MR 0262150 —, Über die Klassenzahl quadratis cher Zahlkörper, Acta Arith. 1 (1935), 275-279.
- H. M. Stark, A complete determination of the complex quadratic fields of class-number one, Michigan Math. J. 14 (1967), 1–27. MR 222050 —, Imaginary quadratic fields of class number 2, Ann. of Math. (2) 94 (1971), 153-174.
- Judith E. Sunley, On the class numbers of totally imaginary quadratic extensions of totally real fields, Bull. Amer. Math. Soc. 78 (1972), 74–76. MR 291127, DOI 10.1090/S0002-9904-1972-12859-3
- Judith E. Sunley, On the class numbers of totally imaginary quadratic extensions of totally real fields, Bull. Amer. Math. Soc. 78 (1972), 74–76. MR 291127, DOI 10.1090/S0002-9904-1972-12859-3
- Tikao Tatuzawa, On a theorem of Siegel, Jpn. J. Math. 21 (1951), 163–178 (1952). MR 51262, DOI 10.4099/jjm1924.21.0_{1}63
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 175 (1973), 209-232
- MSC: Primary 12A50
- DOI: https://doi.org/10.1090/S0002-9947-1973-0311622-9
- MathSciNet review: 0311622