Tensor products of group algebras
HTML articles powered by AMS MathViewer
- by J. E. Kerlin
- Trans. Amer. Math. Soc. 175 (1973), 1-36
- DOI: https://doi.org/10.1090/S0002-9947-1973-0312286-0
- PDF | Request permission
Abstract:
Let C be a commutative Banach algebra. A commutative Banach algebra A is a Banach C-algebra if A is a Banach C-module and $c \cdot (aa’) = (c \cdot a)a’$ for all $c \in C,a,a’ \in A$. If ${A_1}, \cdots ,{A_n}$ are commutative Banach C-algebras, then the C-tensor product ${A_1}{ \otimes _C} \cdots { \otimes _C}{A_n} \equiv D$ is defined and is a commutative Banach C-algebra. The maximal ideal space ${\mathfrak {M}_D}$ of D is identified with a closed subset of ${\mathfrak {M}_{{A_1}}} \times \cdots \times {\mathfrak {M}_{{A_n}}}$ in a natural fashion, yielding a generalization of the Gelbaum-Tomiyama characterization of the maximal ideal space of ${A_1}{ \otimes _\gamma } \cdots { \otimes _\gamma }{A_n}$. If $C = {L^1}(K)$ and ${A_i} = {L^1}({G_i})$, for LCA groups K and ${G_i},i = 1, \cdots ,n$, then the ${L^1}(K)$-tensor product D of ${L^1}({G_1}), \cdots ,{L^1}({G_n})$ is uniquely written in the form $D = N \oplus {D_e}$, where N and ${D_e}$ are closed ideals in D, ${L^1}(K) \cdot N = \{ 0\}$, and ${D_e}$ is the essential part of D, i.e. ${D_e} = {L^1}(K) \cdot D$. Moreover, if ${D_e} \ne \{ 0\}$, then ${D_e}$ is isometrically ${L^1}(K)$-isomorphic to ${L^1}({G_1}{ \otimes _K} \cdots { \otimes _K}{G_n})$, where ${G_1}, \cdots ,{G_n}$ is a K-tensor product of ${G_1}, \cdots ,{G_n}$ with respect to naturally induced actions of K on ${G_1}, \cdots ,{G_n}$. The above theorems are a significant generalization of the work of Gelbaum and Natzitz in characterizing tensor products of group algebras, since here the algebra actions are arbitrary. The Cohen theory of homomorphisms of group algebras is required to characterize the algebra actions between group algebras. Finally, the space of multipliers ${\operatorname {Hom}_{{L^1}(K)}}({L^1}(G),{L^\infty }(H))$ is characterized for all instances of algebra actions of ${L^1}(K)$ on ${L^1}(G)$ and ${L^1}(H)$, generalizing the known result when $K = G = H$ and the module action is given by convolution.References
- Paul J. Cohen, On homomorphisms of group algebras, Amer. J. Math. 82 (1960), 213–226. MR 133398, DOI 10.2307/2372732
- Bernard R. Gelbaum, Tensor products of Banach algebras, Canadian J. Math. 11 (1959), 297–310. MR 104162, DOI 10.4153/CJM-1959-032-3
- B. R. Gelbaum, Tensor products and related questions, Trans. Amer. Math. Soc. 103 (1962), 525–548. MR 138966, DOI 10.1090/S0002-9947-1962-0138966-0
- B. R. Gelbaum, Tensor products over Banach algebras, Trans. Amer. Math. Soc. 118 (1965), 131–149. MR 178371, DOI 10.1090/S0002-9947-1965-0178371-7
- Bernard R. Gelbaum, Tensor products of group algebras, Pacific J. Math. 22 (1967), 241–250. MR 215017
- John E. Gilbert, On projections of $L^{\infty }(G)$ onto translation-invariant subspaces, Proc. London Math. Soc. (3) 19 (1969), 69–88. MR 244705, DOI 10.1112/plms/s3-19.1.69
- Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR 75539
- Larry C. Grove, Tensor products and compact groups, Illinois J. Math. 11 (1967), 628–634. MR 225171
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496 —, Abstract harmonic analysis. Vol. 2: Structure and analysis for compact groups analysis on locally compact Abelian groups, Die Grundlehren der math. Wissenschaften, Band 152, Springer-Verlag, New York and Berlin, 1970. MR 41 #7378.
- G. Philip Johnson, Spaces of functions with values in a Banach algebra, Trans. Amer. Math. Soc. 92 (1959), 411–429. MR 107185, DOI 10.1090/S0002-9947-1959-0107185-6
- J. E. Kerlin Jr., On algebra actions on a group algebra, Pacific J. Math. 38 (1971), 669–680. MR 361618 Lawrence Lardy, Tensor products over semigroup algebras, Ph.D. Dissertation, University of Minnesota, Minneapolis, Minn., 1964.
- Boaz Natzitz, Tensor products of Banach algebras, Canad. Math. Bull. 11 (1968), 691–701. MR 240643, DOI 10.4153/CMB-1968-083-3
- H. Reiter, Contributions to harmonic analysis. VI, Ann. of Math. (2) 77 (1963), 552–562. MR 151795, DOI 10.2307/1970130
- Hans Reiter, Classical harmonic analysis and locally compact groups, Clarendon Press, Oxford, 1968. MR 0306811
- Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0115101
- Marc A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Functional Analysis 1 (1967), 443–491. MR 0223496, DOI 10.1016/0022-1236(67)90012-2
- Marc A. Rieffel, Multipliers and tensor products of $L^{p}$-spaces of locally compact groups, Studia Math. 33 (1969), 71–82. MR 244764, DOI 10.4064/sm-33-1-71-82
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
- Robert Schatten, A Theory of Cross-Spaces, Annals of Mathematics Studies, No. 26, Princeton University Press, Princeton, N. J., 1950. MR 0036935
- Bert M. Schreiber, On the coset ring and strong Ditkin sets, Pacific J. Math. 32 (1970), 805–812. MR 259502
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 175 (1973), 1-36
- MSC: Primary 46M05; Secondary 43A20
- DOI: https://doi.org/10.1090/S0002-9947-1973-0312286-0
- MathSciNet review: 0312286