Distance estimates and pointwise bounded density
HTML articles powered by AMS MathViewer
- by A. M. Davie, T. W. Gamelin and J. Garnett
- Trans. Amer. Math. Soc. 175 (1973), 37-68
- DOI: https://doi.org/10.1090/S0002-9947-1973-0313514-8
- PDF | Request permission
Abstract:
Let U be a bounded open subset of the complex plane, and let H be a closed subalgebra of ${H^\infty }(U)$, the bounded analytic functions on U. If E is a subset of $\partial U$, let ${L_E}$ be the algebra of all bounded continuous functions on U which extend continuously to E, and set ${H_E} = H \cap {L_E}$. This paper relates distance estimates of the form $d(h,H) = d(h,{H_E})$, for all $h \in {L_E}$, to pointwise bounded density of ${H_E}$ in H. There is also a discussion of the linear space $H + {L_E}$, which turns out often to be a closed algebra.References
- V. M. Adamjan, D. Z. Arov, and M. G. Kreĭn, Infinite Hankel matrices and generalized problems of Carathéodory-Fejér and F. Riesz, Funkcional. Anal. i Priložen. 2 (1968), no. 1, 1–19 (Russian). MR 0234274
- Alexander M. Davie, Bounded approximation and Dirichlet sets, J. Functional Analysis 6 (1970), 460–467. MR 0275168, DOI 10.1016/0022-1236(70)90073-x
- A. M. Davie, Analytic capacity and approximation problems, Trans. Amer. Math. Soc. 171 (1972), 409–444. MR 350009, DOI 10.1090/S0002-9947-1972-0350009-9
- A. M. Davie, Bounded limits of analytic functions, Proc. Amer. Math. Soc. 32 (1972), 127–133. MR 293069, DOI 10.1090/S0002-9939-1972-0293069-1 J. Detraz, Étude du spectre d’algébres de fonctions analytiques sur le disque unité, C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A833-A835. MR 40 #7812.
- R. G. Douglas, On the spectrum of Toeplitz and Wiener-Hopf operators, Abstract Spaces and Approximation (Proc. Conf., Oberwolfach, 1968) Birkhäuser, Basel, 1969, pp. 53–66. MR 0259638
- R. G. Douglas and Walter Rudin, Approximation by inner functions, Pacific J. Math. 31 (1969), 313–320. MR 254606
- Stephen Fisher, Bounded approximation by rational functions, Pacific J. Math. 28 (1969), 319–326. MR 240314
- T. W. Gamelin, Norm compactness of representing measures for $R(K)$, J. Functional Analysis 3 (1969), 495–500. MR 0239425, DOI 10.1016/0022-1236(69)90035-4
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- T. W. Gamelin, Localization of the corona problem, Pacific J. Math. 34 (1970), 73–81. MR 276742
- T. W. Gamelin and John Garnett, Distinguished homomorphisms and fiber algebras, Amer. J. Math. 92 (1970), 455–474. MR 303296, DOI 10.2307/2373334
- T. W. Gamelin and John Garnett, Pointwise bounded approximation and Dirichlet algebras, J. Functional Analysis 8 (1971), 360–404. MR 0295085, DOI 10.1016/0022-1236(71)90002-4
- T. W. Gamelin and John Garnett, Uniform approximation to bounded analytic functions, Rev. Un. Mat. Argentina 25 (1970/71), 87–94. MR 372209
- T. W. Gamelin and John Garnett, Bounded approximation by rational functions, Pacific J. Math. 45 (1973), 129–150. MR 415324
- Henry Helson and Donald Sarason, Past and future, Math. Scand. 21 (1967), 5–16 (1968). MR 236989, DOI 10.7146/math.scand.a-10840
- Donald Sarason, Generalized interpolation in $H^{\infty }$, Trans. Amer. Math. Soc. 127 (1967), 179–203. MR 208383, DOI 10.1090/S0002-9947-1967-0208383-8
- Arne Stray, An approximation theorem for subalgebras of $H_{\infty }$, Pacific J. Math. 35 (1970), 511–515. MR 276775
- A. G. Vituškin, Analytic capacity of sets in problems of approximation theory, Uspehi Mat. Nauk 22 (1967), no. 6 (138), 141–199 (Russian). MR 0229838
- Lawrence Zalcman, Bounded analytic functions on domains of infinite connectivity, Trans. Amer. Math. Soc. 144 (1969), 241–269. MR 252665, DOI 10.1090/S0002-9947-1969-0252665-2
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 175 (1973), 37-68
- MSC: Primary 30A78; Secondary 30A98, 46J15
- DOI: https://doi.org/10.1090/S0002-9947-1973-0313514-8
- MathSciNet review: 0313514