A CHARACTERIZATION OF $U_3(2^n)$
BY ITS SYLOW 2-SUBGROUP

BY

ROBERT L. GRIESS, JR.

ABSTRACT. We determine all the finite groups having a Sylow 2-subgroup
isomorphic to that of $U_3(2^n)$, $n \geq 3$. In particular, the only such simple groups
are the $U_3(2^n)$.

1. Introduction. Let N be the normalizer of a Sylow 2-subgroup in the pro-
jective special unitary group $U_3(2^n)$, $n \geq 3$. In [1], M. Collins proved

Theorem. Suppose G is a finite simple group with Sylow 2-subgroup S. If
$N_G(S)/O(N_G(S)) \cong N$, then $G \cong U_3(2^n)$.

In this paper, we remove the hypothesis on the normalizer.

Theorem 1. If G is a finite simple group with Sylow 2-subgroup isomorphic
to that of $U_3(q)$, $q = 2^n$, $n \geq 3$, then $G \cong U_3(q)$.

Theorem 2. If G is a finite group with Sylow 2-subgroup isomorphic to that
of $U_3(q)$, $q = 2^n$, $n \geq 3$, then either

(i) G is solvable of 2-length one; or

(ii) $G/O(G)$ has a normal subgroup of odd index isomorphic to $U_3(q)$.

These results are a step in the general program of characterizing simple
groups by their Sylow 2-subgroups. Using Collins' method as a skeleton for our
proof, we analyze the possibilities for the action of $N_G(S)$ on S and $Z(S)$, where
S is a Sylow 2-subgroup of G, then generalize certain of his arguments. For
$q = 4$, the conclusion of Theorem 1 was obtained by R. Lyons [5]. Since the
author proved these theorems, he has learned that M. Collins has obtained sim-
ilar results. Collins' methods and our methods of proof differ significantly,
however.

2. Notation and assumed results. Group theoretic notation is standard (e.g.,
see [3]). For a group X, $O(X)$ denotes the largest normal subgroup of odd order.
$A_G(X)$ denotes $N_G(X)/C_G(X)$ for $X \subseteq G$. We use the bar convention for denoting
homomorphic images. The 2-rank \(m(X) \) of a group \(X \) is the minimal number of generators for an elementary abelian 2-subgroup of maximal order in \(X \).

We need some information about the structure of \(S \). Throughout this paper, \(q = 2^n, n \geq 3 \).

Lemma 1. (i) \(\Omega_1(S) = Z(S) = S' = \Phi(S) \).
(ii) If \(t \in S, t \notin Z(S) \), then \([t, S] = Z(S)\) and \(C_S(t) \) is abelian of order \(q^2 \).
(iii) If \(H < Z(S) \), then \(Z(S/H) = Z(S)/H \); for \(t \) above, \(C_{S/H}(tH) \) has order \(q^2 \) as \([tH, S/H] = Z(S/H)\).

Proof. The assertions follow from inspecting this presentation of \(S \):
\[
S = \{x(a, b) \mid a, b \in GF(q^2), \quad aa^\sigma = b + ba \text{ where } (a) = \text{Gal}(GF(q^2)/GF(q))
\]
and \(x(a, b)x(c, d) = x(a + c, b + d + ac^\sigma) \}.

We also use, sometimes without comment, the Feit-Thompson theorem on the solvability of groups of odd order \(2 \), Walter’s classification of groups with abelian Sylow 2-subgroups \(8 \), Suzuki’s classification of groups with 2-closed centralizers of involutions \(7 \), and the following result of Gorenstein-Walter (see \(4 \) for definitions).

Theorem C. If \(G \) is a connected, balanced group, with 2-rank \(m(G) \geq 3 \), \(O(G) = 1 \), and the centralizer of every involution is 2-generated, then \(O(C_G(x)) = 1 \), for all involutions \(x \in G \).

Since Theorem 1 follows directly from Theorem 2, we may assume henceforth that \(G \) is a group satisfying the hypotheses of Theorem 2, and that \(O(G) = 1 \).

3. The proof.

Lemma 2. Suppose \(\alpha \in A_G(S), 1 \neq |\alpha| \) is odd, and \(\alpha \) acts trivially on \(Z(S) \). Then \(\alpha \) acts fixed point freely on \(S/Z(S) \).

Proof. Write \(S = S/Z(S) \) and suppose \(x \in S, \alpha x = x \). Then, as \(C_S(x) = C_S(y) \), for any \(x, y \in S, \alpha \) stabilizes \(C_S(x) \), for \(x \in x \). By Fitting’s theorem, \(\alpha \) is trivial on \(C_S(x) \) since \(C_S(x) \) is \(\alpha \)-invariant, abelian, and \(Z(S) = \Omega_1(C_S(x)) \).

Let \(L = L_1 \oplus L_2 \) be the Lie algebra associated with \(S \) and let \(M \) be the image of \(C_S(x) \) in \(L_1 \). Let \(L_0 = L_{10} \oplus L_{20} \), \(M_0 \) be the above objects tensored with an algebraically closed field \(k \) of characteristic 2. In \(M_0 \), \(\alpha \) has eigenvectors \(\xi_1, \ldots, \xi_n \) for the eigenvalue 1. Let \(\eta_1, \ldots, \eta_n \) be a complementary set of eigenvectors in \(L_{10} \) for the \(n \) remaining eigenvalues \(\lambda_1, \ldots, \lambda_n \in k \).

Since \([M_0, N_0] = 0\) in \(L_{20} \), \(k\eta_1 \oplus \cdots \oplus k\eta_n = N_0 \) is an \(\alpha \)-invariant complement to \(M_0 \) in \(L_{10} \) and the pairing \((n, m) \mapsto [n, m] \in L_{20} \), \(n \in N_0, m \in M_0 \) is non-degenerate, or else some element of \(C_S(x) \setminus Z(S) \) has too large a centralizer in \(S \).
So, L_2 is spanned by all $[\eta_i, \xi_j]$, which are eigenvectors for the values $\lambda_i \cdot 1 = \lambda_i$. Since α is trivial on $Z(S) = L_2$, $\lambda_i = 1$. Thus, α is trivial on $S/Z(S) = L_1$. By 5.3.2 of [3], $\alpha = 1$. This proves the lemma.

Lemma 3. $N_G(Z(S))$ is solvable of 2-length 1.

Proof. It suffices to prove the statement for $C_G(Z(S))$, since $|N_G(Z(S))/C_G(Z(S))|$ is odd.

Set $D = C_G(Z(S)) = C_G(Z(S))/O(C_G(Z(S)))$. Then, $O(D) = 1$, $Z(S) = Z(D)$. Set $E = D/Z(S)$; E has abelian Sylow 2-subgroups.

Suppose E is nonsolvable. Then E has a normal subgroup F of odd index, where F is the direct product of an elementary abelian 2-group, and at least one Janko group, group of Ree type, or $L_2(q)$, $q = 3, 5 \mod 8$, $q > 5$ or $4|q)$. Let N be the normalizer in F of a Sylow 2-subgroup S^*. By the Frattini argument, N is a quotient of $N_G(Z(S)) \cap C_G(Z(S))$. Lemma 2 then implies that any element of $A_F(S^*)$ acts fixed point freely on S^*. Hence the only possibility is $F = L_2(q)$. If F is the preimage of F in D, F is a nonsplit perfect extension of F by $Z(S)$ because the induced extension \bar{S} of S^* has $Z(S) \subseteq \bar{S}$. But $Z(S)$ is noncyclic while the multiplier of $L_2(q)$ is always cyclic [6], contradiction.

Thus, E is solvable, and so is $C_G(Z(S))$.

Definition. Choose $z \in Z(S)^w$, and set $E_1 = C_G(z)/O(C_G(z))(z)$. Let $\xi_1 = \{E_1\}$. Define families ξ_i, $i = 2, \ldots, n$, of sections of E_1 as follows: we say $E \in \xi_i$ if there is an $F \in \xi_{i-1}$ and an involution $\zeta \in Z(T)$, T a Sylow 2-subgroup of F, with $E = C_F(\zeta)/O(C_F(\zeta))(\zeta)$.

E_i denotes a typical member of ξ_i, and S_i denotes the image of S in E_i under the obvious sequence of homomorphisms.

Proposition. Each E_i is solvable and 2-closed.

We use downward induction on i. The proof goes in a sequence of lemmas which are directed toward using Theorem C. In what follows, the ζ of the definition may be assumed to lie in S_{i-1}.

Lemma 4. Let ν be an involution in S_i not in $Z(S_i)$, for $i < n$. Then ν is not conjugate in E_i to an element of $Z(S_i)$.

Proof. By Lemma 1(iii), S_i is nonabelian. Suppose ν is conjugate to $\zeta \in Z(S_i)$. By regarding E_i as a section of $C_G(Z)$, consider S_i as a quotient of S, and see that the preimage in S of $\langle \nu \rangle$ has exponent 4, while the preimage of $\langle \zeta \rangle$ is elementary, contradiction. The lemma follows.

In the next four lemmas, when $i < n$, ν has the above meaning, and when $i = n$, ν is any involution of S_n. We may drop the subscript and write E for E_i when confusion is unlikely.
Lemma 5. A Sylow 2-subgroup of $C_E(v)$ is contained in any Sylow 2-subgroup of E in which v lies.

Proof. Use Lemmas 1(iii) and 4.

Lemma 6. $C_E(v)$ is solvable of 2-length 1.

Proof. Express $K = C_E(v)/O(C_E(v))$ as a section $K = A/M$ of $C_G(z)$. The lemma will follow once we show that A/M is covered by a subgroup of $N_G(Z(S))$, by Lemma 3.

Let $w \in A$ represent v with $w^2 = t \in Z(S)^A$. Let T be a Sylow 2-subgroup of M, $T \subseteq Z(S)$. Let $(\zeta_0, \ldots, \zeta_{i-1})$ be the sequence of involutions defining E, i.e., $\zeta_0 = z$, $\zeta_1 \in E_1$, \ldots, etc. We may choose an involution $z_j \in T$ representing ζ_j.

We claim $N_A(T)$ acts trivially on $T = \langle z_0, \ldots, z_{i-1} \rangle$. For $i - 1 = 0$, this is obvious, so assume $i - 1 > 0$. Consider K as a quotient of a subgroup H of $C_{E_{i-1}}(\zeta_{i-1})$, and write H as a quotient A/B of $C_G(z)$, with $M \supseteq B$. By the Frattini argument, $A = B \cdot N_A(T)$. Since $z_{i-1} \in T$ maps to an element of $Z(A/B)$, $N_A(T)$ stabilizes the normal series $T \supset T_0 \supset 1$, where $T_0 = T \cap B$ is a Sylow 2-subgroup of B. Now $N_A(T)$ acts trivially on $T/T_0 \cong Z_2$, and, by induction, is trivial on T_0. So, $N_A(T)$ induces a 2-group of automorphisms on T, by 5.3.2 of [3]. But T is contained in a Sylow 2-center of $C_G(z)$. Hence, $N_A(T)$ acts trivially, i.e., $N_A(T) = C_A(T)$.

Now, set $C = C_{C_A(T)}(w)$, $C_j = \{x \in C_A(T)[w, x] \in \langle z_0, \ldots, z_j \rangle\}$ for $j = 0, \ldots, i - 1$. Then, C_{i-1} covers A/M, $|C_j : C_{j-1}| = 2$, for $j = 1, \ldots, i - 1$, and $|C_0 : C| = 2$; also, C and C_0, \ldots, C_{i-1} are all normal in C_{i-1}, and these groups have common core $O(C)$. Now, $T \subseteq C$ and $U = C\langle w \rangle$ is abelian of exponent 4, order q^2. So, $T \subseteq Z(S) = \Phi(U)$. Since U is abelian and $\Omega_1(U) = \Phi(U)$, Walter's classification implies $U \leq C \leq C_{i-1} = C_{i-1}/O(C)$; hence $Z(S) \leq C$. Now, $Z(S) \leq S \cap C_{i-1}$ and $C(S \cap C_{i-1}) = C_{i-1}$. Therefore, $Z(S) \leq C_{i-1}$. This means A/M is covered by subgroup of $N_G(Z(S))$, which is solvable of 2-length one. This proves the lemma.

Lemma 7. $C_E(v)$ is 2-generated.

Proof. Set $\Gamma = \Gamma_{C_{i+1}^2}$, where $C_i = C_{S_i^2}(v)$. For all i, C_i contains a four-group disjoint from $\langle v \rangle$. So, $O(C_E(v)) \subseteq \Gamma$. But $X = C_E(v)/O(C_E(v))$ is 2-closed, and $O_2(X)$ contains a four-group. Hence, the Frattini argument implies that $C_E(v)$ is 2-generated.

Lemma 8. If t is an involution in $C_E(v)$, then $O(C_E(t)) \subseteq O(C_E(v))$.

Proof. Let $D = C_E(v)/O(C_E(v))$ and let $\tilde{t} \in S_i$ be the image in D of $t \in S_i$.
Suppose $i < n$. $O_2(D)$ is a Sylow 2-subgroup of D and any nonidentity element of odd order in D acts nontrivially on $Z(O_2(D))$, by Lemmas 2, 3, 6. Thus, $Z(O_2(D))$ normalizes no subgroup of odd order in D. Since $Z(O_2(D)) \subset C_E(t) = 1$, $O(C_E(t)) = 1$, which implies the lemma.

Suppose $i = n$. Then $O_2(D)$ is abelian and every element of odd order in D acts fixed point freely on $O_2(D)$. So, the centralizer in D of any t is a 2-group. Again, the lemma holds.

Lemma 9. The proposition holds.

Proof. By construction, each $O(E_i) = 1$. We argue by downward induction on i.

Let $i = n$. Then E_n has abelian Sylow 2-subgroups and is a section of $C_G(Z(S))$ by the proof of Lemma 6 (take $T = Z(S)$ in that notation). Hence, E_n is solvable by Lemma 3 and $E_n = O_{2,2}(E_n)$. So, for $i = n$, the lemma holds.

Now, let $F \in E_i$, $i < n$. For any $\zeta \in Z(S_i)$, $E = C_F(\zeta)\langle O(C_F(\zeta))\rangle \in E_{i+1}$ is solvable and 2-closed by induction. For an involution v outside a Sylow 2-center, $C_F(v)$ is solvable of length 1, by Lemma 6.

We wish to show balance holds in F. By Lemma 8, it suffices to prove, for $t \in S_i$, that the image of $O(C_F(t))$ in $C = C_F(\zeta)\langle O(C_F(\zeta))\rangle$ is 1. Now, $E = C_F(\zeta)\langle O(C_F(\zeta))\rangle$ is solvable and 2-closed. Imitating the argument that $N_A(T) = C_A(T)$ in the proof of Lemma 6, we get that C is isomorphic to a subgroup C^* of odd index in $N^* = (N_G(S) \cap C_G(T))O(N_G(S))/O(N_G(S))T$, where $T \subset Z(S)$. If S^* is the image of S in N^*, we will have $O(C_{S^*}(t)) = 1$ for any involution $t \in C^*$, provided we show $C_{S^*}(t)$ normalizes no subgroup of odd order in C^*.

If $t \in Z(S^*)\langle \rangle$, clearly $\delta^* = C_{S^*}(t)$ normalizes no subgroup of odd order in N^*. If t is an involution in S^* not in $Z(S^*)$ with $O(C_{N^*}(t)) \neq 1$, then $Z(S^*)$ normalizes, hence centralizes (as N^* is 2-closed), a nontrivial subgroup of odd order. Let $x \in O(C_{N^*}(t))\langle \rangle$ and let $y \in N_G(S) \cap C_G(T)$ represent x, $|y|$ odd. Lemma 2 implies that y acts nontrivially on $Z(S)$ since y is nontrivial on S and fixes the coset of $Z(S)$ in S corresponding to t. But y centralizes T, hence must act nontrivially on $Z(S)/T \cong Z(S^*)$, as $|y|$ is odd. So, x acts nontrivially on $Z(S^*)$, a contradiction. This gives $O(C_{S^*}(t)) = 1$ in all cases. Therefore, balance holds in F.

Next, we show that $C_F(t)$ is 2-generated for every involution t of F. If t is not 2-central, this is proven in Lemma 7. Let t be 2-central. There is a four-group in $C_F(t)$ disjoint from (t). So, $O(C_F(t)) \subset \Gamma = \Gamma_{S_i,2}$. Consider $C_F(t) / O(C_F(t))$. Since this group is 2-closed, it is 2-generated because, for $i < n - 1$, a Sylow 2-center has rank at least 2, and, for $i = n - 1$, a Sylow 2-subgroup is extra special of order 2^{2n+1}, hence contains a four-group. The Frattini argument now shows that $C_F(t)$ is 2-generated.
Now, we show F is connected. For $i < n - 1$, a Sylow 2-center is noncyclic, whence connectivity. For $i = n - 1$, the extra special Sylow 2-subgroup contains an elementary abelian normal subgroup of order $2^n \geq 2^3$. By the remark on p. 4 of [4], F is connected in this case, too.

Since $O(F) = 1$, $m(F) \geq 3$, Theorem C implies $O(C_F(t)) = 1$ for every involution $t \in F$. Our previous arguments then imply that every involution of F has 2-closed centralizer. By Suzuki's classification, S_i does not occur as a Sylow 2-subgroup of a simple group. So, F is not simple. We want to show F solvable.

If $O_2(F) \neq 1$, then $W = Z(S_i) \cap O_2(F) \neq 1$. Lemma 4 implies that W is strongly closed in $O_2(F)$ with respect to F. Hence $W < F$. Since $|F:C_F(W)|$ is odd, F is solvable and 2-closed because $C_F(W)/\langle \zeta \rangle$, $\zeta \in W^H$, is contained in some $E \in \mathcal{E}_{i+1}$ and E is solvable and 2-closed by induction. If $O_2(F) = 1$, then Theorem 2 of [7] implies that F has cyclic, quaternion, or semidihedral Sylow 2-subgroups, contradicting $m(F) \geq 3$. Thus, F is solvable, and the proposition is proven.

Lemma 10. Let z be an involution of S. Then $C_G(z) \subseteq N_G(S)$.

Proof. We know $C_G(z)$ is solvable of 2-length 1. Since $m(S) \geq 3$, Theorem C implies $O(C_G(z)) = 1$ as $O(G) = 1$. Thus $O_G(z)$ is 2-closed, i.e., $C_G(z) \subseteq N_G(S)$.

Lemma 11. Theorem 2 holds.

Proof. For each involution z of G, $C_G(z)$ is 2-closed. Thus, Suzuki's classification implies Theorem 2.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN

48104