A characterization of $U_{3}(2^{n})$ by its Sylow $2$-subgroup
HTML articles powered by AMS MathViewer
- by Robert L. Griess
- Trans. Amer. Math. Soc. 175 (1973), 181-186
- DOI: https://doi.org/10.1090/S0002-9947-1973-0318292-4
- PDF | Request permission
Abstract:
We determine all the finite groups having a Sylow 2-subgroup isomorphic to that of ${U_3}({2^n}),n \geq 3$. In particular, the only such simple groups are the ${U_3}({2^n})$.References
- Michael J. Collins, The characterisation of the unitary groups $\textrm {U}_{3}(2^{n})$ by their Sylow $2$-subgroups, Bull. London Math. Soc. 4 (1972), 49β53. MR 340441, DOI 10.1112/blms/4.1.49
- Walter Feit and John G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775β1029. MR 166261
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
- Daniel Gorenstein and John H. Walter, Centralizers of involutions in balanced groups, J. Algebra 20 (1972), 284β319. MR 292927, DOI 10.1016/0021-8693(72)90060-9 R. Lyons, Thesis, University of Chicago, Chicago, Ill., 1970. I. Schur, Γber die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 127 (1904), 20-50; ibid. 132 (1907), 85-137.
- Michio Suzuki, Finite groups in which the centralizer of any element of order $2$ is $2$-closed, Ann. of Math. (2) 82 (1965), 191β212. MR 183773, DOI 10.2307/1970569
- John H. Walter, The characterization of finite groups with abelian Sylow $2$-subgroups, Ann. of Math. (2) 89 (1969), 405β514. MR 249504, DOI 10.2307/1970648
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 175 (1973), 181-186
- MSC: Primary 20D05
- DOI: https://doi.org/10.1090/S0002-9947-1973-0318292-4
- MathSciNet review: 0318292