## On functions positive definite relative to the orthogonal group and the representation of functions as Hankel-Stieltjes transforms

HTML articles powered by AMS MathViewer

- by A. Edward Nussbaum PDF
- Trans. Amer. Math. Soc.
**175**(1973), 389-408 Request permission

## Abstract:

To every continuous function $f$ on an interval $0 \leq x < a(0 < a \leq \infty )$ and every positive number $\nu$ associate the kernel \[ f(x,y) = \int _0^\pi f\left ( (x^2 + y^2 - 2xy \cos \theta )^{1/2}\right ) (\sin \theta )^{2\nu - 1},d\theta ,\quad 0 < x, y < a/2. \] Let $\Omega (z) = \Gamma (\nu + 1/2) (2/z)^{\nu - 1/2} J_{\nu -1/2} J_{\nu - 1/2}(z)$, where $J_{\nu - 1/2}(z)$ is the Bessel function of index $\nu - 1/2$. It is shown that $f$ has an integral representation $f(x) = \int _{-\infty }^\infty \Omega (x\sqrt \lambda )d\gamma (\lambda )$, where $\gamma$ is a finite, positive Radon measure on $R$, if and only if the kernel $f(x,y)$ is positive definite. If $\nu = (N - 1)/2$, where $N$ is an integer $\geq 2$, this condition is equivalent to ${f_N}(x) = f(|x|),\;x \in {R^N},\;|x| < \alpha$, is positive definite relative to the orthogonal group $O(N)$. The results of this investigation extend the preceding one of the author on functions positive definite relative to the orthogonal group. In particular they yield the result of Rudin on the extensions of radial positive definite functions.## References

- F. M. Cholewinski, D. T. Haimo, and A. E. Nussbaum,
*A necessary and sufficient condition for the representation of a function as a Hankel-Stieltjes transform*, Studia Math.**36**(1970), 269–274. MR**271652**, DOI 10.4064/sm-36-3-269-274 - I. I. Hirschman Jr.,
*Variation diminishing Hankel transforms*, J. Analyse Math.**8**(1960/61), 307–336. MR**157197**, DOI 10.1007/BF02786854 - A. E. Nussbaum,
*Radial exponentially convex functions*, J. Analyse Math.**25**(1972), 277–288. MR**302835**, DOI 10.1007/BF02790041 - A. E. Nussbaum,
*Integral representation of functions and distributions positive definite relative to the orthogonal group*, Trans. Amer. Math. Soc.**175**(1973), 355–387. MR**333600**, DOI 10.1090/S0002-9947-1973-0333600-6 - Walter Rudin,
*An extension theorem for positive-definite functions*, Duke Math. J.**37**(1970), 49–53. MR**254514** - I. J. Schoenberg,
*Metric spaces and completely monotone functions*, Ann. of Math. (2)**39**(1938), no. 4, 811–841. MR**1503439**, DOI 10.2307/1968466 - L. Schwartz,
*Théorie des distributions. Tome I*, Publ. Inst. Math. Univ. Strasbourg, vol. 9, Hermann & Cie, Paris, 1950 (French). MR**0035918** - G. N. Watson,
*A Treatise on the Theory of Bessel Functions*, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR**0010746**

## Additional Information

- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**175**(1973), 389-408 - MSC: Primary 43A70; Secondary 44A15
- DOI: https://doi.org/10.1090/S0002-9947-1973-0333601-8
- MathSciNet review: 0333601