The Brauer group of graded Azumaya algebras
HTML articles powered by AMS MathViewer
- by L. N. Childs, G. Garfinkel and M. Orzech PDF
- Trans. Amer. Math. Soc. 175 (1973), 299-326 Request permission
Abstract:
We study G-graded Azumaya R-algebras for R a commutative ring and G a finite abelian group, and a Brauer group formed by such algebras. A short exact sequence is obtained which relates this Brauer group with the usual Brauer group of R and with a group of graded Galois extensions of R. In case G is cyclic a second short exact sequence describes this group of graded Galois extensions in terms of the usual group of Galois extensions of R with group G and a certain group of functions on ${\text {Spec}}(R)$.References
- Maurice Auslander and Oscar Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367–409. MR 121392, DOI 10.1090/S0002-9947-1960-0121392-6 H. Bass, Lectures on algebraic K-theory, Tata Institite of Fundamental Research, Bombay, 1967. N. Bourbaki, Éléments de mathématique. Fasc. XXVII. Algèbre commutative. Chap. 2, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146.
- S. U. Chase, D. K. Harrison, and Alex Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 15–33. MR 195922
- L. N. Childs, Abelian Galois extensions of rings containing roots of unity, Illinois J. Math. 15 (1971), 273–280. MR 274524
- L. N. Childs and F. R. DeMeyer, On automorphisms of separable algebras, Pacific J. Math. 23 (1967), 25–34. MR 217122
- F. R. DeMeyer, Some notes on the general Galois theory of rings, Osaka Math. J. 2 (1965), 117–127. MR 182645
- Gerald Garfinkel and Morris Orzech, Galois extensions as modules over the group ring, Canadian J. Math. 22 (1970), 242–248. MR 258817, DOI 10.4153/CJM-1970-031-6
- Manabu Harada, Some criteria for hereditarity of crossed products, Osaka Math. J. 1 (1964), 69–80. MR 174584
- D. K. Harrison, Abelian extensions of commutative rings, Mem. Amer. Math. Soc. 52 (1965), 1–14. MR 195921
- G. J. Janusz, Separable algebras over commutative rings, Trans. Amer. Math. Soc. 122 (1966), 461–479. MR 210699, DOI 10.1090/S0002-9947-1966-0210699-5
- Teruo Kanzaki, On commutor rings and Galois theory of separable algebras, Osaka J. Math. 1 (1964), 103–115; correction, ibid. 1 (1964), 253. MR 168605
- Teruo Kanzaki, On Galois algebra over a commutative ring, Osaka Math. J. 2 (1965), 309–317. MR 191923
- Max-A. Knus, Algebras graded by a group, Category Theory, Homology Theory and their Applications, II (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Two), Springer, Berlin, 1969, pp. 117–133. MR 0242895
- Morris Orzech, A cohomological description of abelian Galois extensions, Trans. Amer. Math. Soc. 137 (1968), 481–499. MR 238838, DOI 10.1090/S0002-9947-1969-0238838-3
- Charles Small, The Brauer-Wall group of a commutative ring, Trans. Amer. Math. Soc. 156 (1971), 455–491. MR 276218, DOI 10.1090/S0002-9947-1971-0276218-4
- Yasuji Takeuchi, On Galois extensions over commutative rings, Osaka Math. J. 2 (1965), 137–145. MR 182646 B. L. van der Waerden, Modern Algebra. Vol. II, 3rd ed., Ungar, New York, 1950.
- O. E. Villamayor and D. Zelinsky, Galois theory for rings with finitely many idempotents, Nagoya Math. J. 27 (1966), 721–731. MR 206055
- C. T. C. Wall, Graded Brauer groups, J. Reine Angew. Math. 213 (1963/64), 187–199. MR 167498, DOI 10.1515/crll.1964.213.187
- Susan Williamson, Crossed products and hereditary orders, Nagoya Math. J. 23 (1963), 103–120. MR 163943
Additional Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 175 (1973), 299-326
- MSC: Primary 13A20
- DOI: https://doi.org/10.1090/S0002-9947-1973-0349652-3
- MathSciNet review: 0349652