Infinite matroids
HTML articles powered by AMS MathViewer
- by Samuel S. Wagstaff
- Trans. Amer. Math. Soc. 175 (1973), 141-153
- DOI: https://doi.org/10.1090/S0002-9947-1973-0398867-7
- PDF | Request permission
Abstract:
Matroids axiomatize the related notions of dimension and independence. We prove that if S is a set with k matroid structures, then S is the union of k subsets, the ith of which is independent in the ith matroid structure, iff for every (finite) subset A of S, $|A|$ is not larger than the sum of the dimensions of A in the k matroids. A matroid is representable if there is a dimension-preserving imbedding of it in a vector space. A matroid is constructed which is not the union of finitely many representable matroids. It is shown that a matroid is representable iff every finite subset of it is, and that if a matroid is representable over fields of characteristic p for infinitely many primes p, then it is representable over a field of characteristic 0. Similar results for other kinds of representation are obtained.References
- Jack Edmonds, Minimum partition of a matroid into independent subsets, J. Res. Nat. Bur. Standards Sect. B 69B (1965), 67–72. MR 190025
- Jack Edmonds and D. R. Fulkerson, Transversals and matroid partition, J. Res. Nat. Bur. Standards Sect. B 69B (1965), 147–153. MR 188090 R. L. Graham, K. Leeb and B. L. Rothschild, Ramsey’s theorem for a class of categories (to appear).
- Alfred Horn, A characterization of unions of linearly independent sets, J. London Math. Soc. 30 (1955), 494–496. MR 71487, DOI 10.1112/jlms/s1-30.4.494
- A. W. Ingleton, A note on independence functions and rank, J. London Math. Soc. 34 (1959), 49–56. MR 101848, DOI 10.1112/jlms/s1-34.1.49
- Nathan Jacobson, Lectures in abstract algebra. Vol III: Theory of fields and Galois theory, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London-New York, 1964. MR 0172871
- T. Lazarson, The representation problem for independence functions, J. London Math. Soc. 33 (1958), 21–25. MR 98701, DOI 10.1112/jlms/s1-33.1.21
- Alfred Lehman, A solution of the Shannon switching game, J. Soc. Indust. Appl. Math. 12 (1964), 687–725. MR 173250
- Saunders MacLane, Some Interpretations of Abstract Linear Dependence in Terms of Projective Geometry, Amer. J. Math. 58 (1936), no. 1, 236–240. MR 1507146, DOI 10.2307/2371070
- Saunders Mac Lane, A lattice formulation for transcendence degrees and $p$-bases, Duke Math. J. 4 (1938), no. 3, 455–468. MR 1546067, DOI 10.1215/S0012-7094-38-00438-7
- R. Rado, Axiomatic treatment of rank in infinite sets, Canad. J. Math. 1 (1949), 337–343. MR 31993, DOI 10.4153/cjm-1949-031-1
- R. Rado, Note on independence functions, Proc. London Math. Soc. (3) 7 (1957), 300–320. MR 88459, DOI 10.1112/plms/s3-7.1.300
- R. Rado, A combinatorial theorem on vector spaces, J. London Math. Soc. 37 (1962), 351–353. MR 146186, DOI 10.1112/jlms/s1-37.1.351
- W. T. Tutte, A homotopy theorem for matroids. I, II, Trans. Amer. Math. Soc. 88 (1958), 144–174. MR 101526, DOI 10.1090/S0002-9947-1958-0101526-0
- W. T. Tutte, Matroids and graphs, Trans. Amer. Math. Soc. 90 (1959), 527–552. MR 101527, DOI 10.1090/S0002-9947-1959-0101527-3
- W. T. Tutte, Lectures on matroids, J. Res. Nat. Bur. Standards Sect. B 69B (1965), 1–47. MR 179781 S. S. Wagstaff, Jr., On infinite matroids, Ph. D. Dissertation, Cornell University, Ithaca, N. Y., 1970.
- Hassler Whitney, On the Abstract Properties of Linear Dependence, Amer. J. Math. 57 (1935), no. 3, 509–533. MR 1507091, DOI 10.2307/2371182
- Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581
- James Ax, The elementary theory of finite fields, Ann. of Math. (2) 88 (1968), 239–271. MR 229613, DOI 10.2307/1970573
- Henry H. Crapo and Gian-Carlo Rota, On the foundations of combinatorial theory: Combinatorial geometries, Preliminary edition, The M.I.T. Press, Cambridge, Mass.-London, 1970. MR 0290980
- P. Erdös and S. Kakutani, On non-denumerable graphs, Bull. Amer. Math. Soc. 49 (1943), 457–461. MR 8136, DOI 10.1090/S0002-9904-1943-07954-2
- M. J. Piff, Properties of finite character of independence spaces, Mathematika 18 (1971), 201–208. MR 306024, DOI 10.1112/S0025579300005465 P. Vámos, A necessary and sufficient condition for a matroid to be linear, Matroid Conference, Brest, 1970 (preprint).
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 175 (1973), 141-153
- MSC: Primary 05B35
- DOI: https://doi.org/10.1090/S0002-9947-1973-0398867-7
- MathSciNet review: 0398867