Free vector lattices
HTML articles powered by AMS MathViewer
- by Roger D. Bleier PDF
- Trans. Amer. Math. Soc. 176 (1973), 73-87 Request permission
Abstract:
An investigation into the algebraic properties of free objects in the category of vector lattices is carried out. It is shown that each ideal of a free vector lattice is a cardinal (direct) sum of indecomposable ideals, and that there are no nonzero proper characteristic ideals. Questions concerning injective and surjective endomorphisms are answered. Moreover, for finitely generated free vector lattices it is shown that the maximal ideals are precisely those which are both prime and principal. These results are preceded by an efficient review of the known properties of free vector lattices. The applicability of the theory to abelian lattice-ordered groups is discussed in a brief appendix.References
- Ichiro Amemiya, Countable decomposability of vector lattices, J. Fac. Sci. Hokkaido Univ. Ser. I 19 (1966), 111–113. MR 0206681
- Kirby A. Baker, Free vector lattices, Canadian J. Math. 20 (1968), 58–66. MR 224524, DOI 10.4153/CJM-1968-008-x —, Topological methods in the algebraic theory of vector lattices, Dissertation, Harvard University, Cambridge, Mass., 1966.
- S. J. Bernau, Free abelian lattice groups, Math. Ann. 180 (1969), 48–59. MR 241340, DOI 10.1007/BF01350085 A. Bigard, Contribution à la théorie des groupes réticulé, Dissertation, Université de Paris, 1969.
- Garrett Birkhoff, Lattice theory, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967. MR 0227053
- Paul F. Conrad, Free abelian $l$-groups and vector lattices, Math. Ann. 190 (1971), 306–312. MR 281667, DOI 10.1007/BF01431159 —, Lattice ordered groups, Tulane University, New Orleans, La., 1970.
- Paul Conrad, The lateral completion of a lattice-ordered group, Proc. London Math. Soc. (3) 19 (1969), 444–480. MR 244125, DOI 10.1112/plms/s3-19.3.444
- László Fuchs, Teilweise geordnete algebraische Strukturen, Studia Mathematica/Mathematische Lehrbücher, Band XIX, Vandenhoeck & Ruprecht, Göttingen, 1966 (German). Übersetzt aus dem Englischen von Éva Vas. MR 0204547
- Melvin Henriksen and J. R. Isbell, Lattice-ordered rings and function rings, Pacific J. Math. 12 (1962), 533–565. MR 153709
- David M. Topping, Some homological pathology in vector lattices, Canadian J. Math. 17 (1965), 411–428. MR 174499, DOI 10.4153/CJM-1965-042-2
- Elliot Carl Weinberg, Free lattice-ordered abelian groups, Math. Ann. 151 (1963), 187–199. MR 153759, DOI 10.1007/BF01398232
- Elliot Carl Weinberg, Free lattice-ordered abelian groups. II, Math. Ann. 159 (1965), 217–222. MR 181668, DOI 10.1007/BF01362439
Additional Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 176 (1973), 73-87
- MSC: Primary 06A65; Secondary 06A60, 46A40
- DOI: https://doi.org/10.1090/S0002-9947-1973-0311541-8
- MathSciNet review: 0311541