On weighted norm inequalities for the Lusin area integral
HTML articles powered by AMS MathViewer
- by Carlos Segovia and Richard L. Wheeden PDF
- Trans. Amer. Math. Soc. 176 (1973), 103-123 Request permission
Abstract:
It is shown that the Lusin area integral for the unit circle is a bounded operator on any weighted ${L^p}$ space, $1 < p < \infty$, on which the conjugate function is a bounded operator. Results are also proved for the case $0 < p \leq 1$.References
- D. L. Burkholder, R. F. Gundy, and M. L. Silverstein, A maximal function characterization of the class $H^{p}$, Trans. Amer. Math. Soc. 157 (1971), 137–153. MR 274767, DOI 10.1090/S0002-9947-1971-0274767-6
- A. P. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85–139. MR 52553, DOI 10.1007/BF02392130
- Lennart Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547–559. MR 141789, DOI 10.2307/1970375
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. MR 284802, DOI 10.2307/2373450
- V. F. Gapoškin, A generalization of the theorem of M. Riesz on conjugate functions. , Mat. Sb. N. S. 46(88) (1958), 359–372 (Russian). MR 0099561
- Henry Helson and Gabor Szegö, A problem in prediction theory, Ann. Mat. Pura Appl. (4) 51 (1960), 107–138. MR 121608, DOI 10.1007/BF02410947
- I. I. Hirschman, The decomposition of Walsh and Fourier series, Mem. Amer. Math. Soc. 15 (1955), 65. MR 72269
- Lars Hörmander, $L^{p}$ estimates for (pluri-) subharmonic functions, Math. Scand. 20 (1967), 65–78. MR 234002, DOI 10.7146/math.scand.a-10821
- Paul Krée, Sur les multiplicateurs dans ${\cal F}\,L^{p}$ avec poids, Ann. Inst. Fourier (Grenoble) 16 (1966), 91–121. MR 216245
- J. Marcinkiewicz and A. Zygmund, A theorem of Lusin. Part I, Duke Math. J. 4 (1938), no. 3, 473–485. MR 1546069, DOI 10.1215/S0012-7094-38-00440-5
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- Richard Hunt, Benjamin Muckenhoupt, and Richard Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251. MR 312139, DOI 10.1090/S0002-9947-1973-0312139-8
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Additional Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 176 (1973), 103-123
- MSC: Primary 31A05; Secondary 30A78, 42A40
- DOI: https://doi.org/10.1090/S0002-9947-1973-0311921-0
- MathSciNet review: 0311921