Weighted norm inequalities for the conjugate function and Hilbert transform
Authors:
Richard Hunt, Benjamin Muckenhoupt and Richard Wheeden
Journal:
Trans. Amer. Math. Soc. 176 (1973), 227-251
MSC:
Primary 42A40; Secondary 44A15, 47G05
DOI:
https://doi.org/10.1090/S0002-9947-1973-0312139-8
MathSciNet review:
0312139
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The principal problem considered is the determination of all non-negative functions $W(x)$ with period $2\pi$ such that \[ \int _{ - \pi }^\pi {|\tilde f(\theta ){|^p}W(\theta )\;d\theta \leq C} \;\int _{ - \pi }^\pi {|f(\theta ){|^p}W(\theta )\;d\theta } \] where $1 < p < \infty$, f has period $2\pi$, C is a constant independent of f, and $\tilde f$ is the conjugate function defined by \[ \tilde f(\theta ) = \lim \limits _{\varepsilon \to {0^ + }} \frac {1}{\pi }\int _{\varepsilon \leq |\phi | \leq \pi } {\frac {{f(\theta - \phi )\;d\phi }}{{2\tan \phi /2}}.} \] The main result is that $W(x)$ is such a function if and only if \[ \left [ {\frac {1}{{|I|}}\int _I {W(\theta )\;d\theta } } \right ]{\left [ {\frac {1}{{|I|}}\int _I {{{[W(\theta )]}^{ - 1/(p - 1)}}d\theta } } \right ]^{p - 1}} \leq K\] where I is any interval, $|I|$ denotes the length of I and K is a constant independent of I. Various related problems are also considered. These include weak type results, the nonperiodic case, the discrete case, an application to weighted mean convergence of Fourier series, and an estimate for one of the functions in the Fefferman and Stein decomposition of functions of bounded mean oscillation.
- A. Benedek and R. Panzone, Continuity properties of the Hilbert transform, J. Functional Analysis 7 (1971), 217–234. MR 0276835, DOI https://doi.org/10.1016/0022-1236%2871%2990032-2
- Charles Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 587–588. MR 280994, DOI https://doi.org/10.1090/S0002-9904-1971-12763-5
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI https://doi.org/10.1007/BF02392215
- Frank Forelli, The Marcel Riesz theorem on conjugate functions, Trans. Amer. Math. Soc. 106 (1963), 369–390. MR 147827, DOI https://doi.org/10.1090/S0002-9947-1963-0147827-3
- V. F. Gapoškin, A generalization of the theorem of M. Riesz on conjugate functions., Mat. Sb. N. S. 46(88) (1958), 359–372 (Russian). MR 0099561
- G. H. Hardy and J. E. Littlewood, Some more theorems concerning Fourier series and Fourier power series, Duke Math. J. 2 (1936), no. 2, 354–382. MR 1545928, DOI https://doi.org/10.1215/S0012-7094-36-00228-4
- Henry Helson and Gabor Szegö, A problem in prediction theory, Ann. Mat. Pura Appl. (4) 51 (1960), 107–138. MR 121608, DOI https://doi.org/10.1007/BF02410947
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI https://doi.org/10.1002/cpa.3160140317
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI https://doi.org/10.1090/S0002-9947-1972-0293384-6
- Benjamin Muckenhoupt, Poisson integrals for Hermite and Laguerre expansions, Trans. Amer. Math. Soc. 139 (1969), 231–242. MR 249917, DOI https://doi.org/10.1090/S0002-9947-1969-0249917-9
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Harold Widom, Singular integral equations in $L_{p}$, Trans. Amer. Math. Soc. 97 (1960), 131–160. MR 119064, DOI https://doi.org/10.1090/S0002-9947-1960-0119064-7
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
- Marvin Rosenblum, Summability of Fourier series in $L^{p}(d\mu )$, Trans. Amer. Math. Soc. 105 (1962), 32–42. MR 160073, DOI https://doi.org/10.1090/S0002-9947-1962-0160073-1
Retrieve articles in Transactions of the American Mathematical Society with MSC: 42A40, 44A15, 47G05
Retrieve articles in all journals with MSC: 42A40, 44A15, 47G05
Additional Information
Keywords:
Conjugate function,
Hilbert transform,
discrete Hilbert transform,
weighted norm inequalities,
bounded mean oscillation
Article copyright:
© Copyright 1973
American Mathematical Society