On a functional calculus for decomposable operators and applications to normal, operator-valued functions
HTML articles powered by AMS MathViewer
- by Frank Gilfeather PDF
- Trans. Amer. Math. Soc. 176 (1973), 369-383 Request permission
Abstract:
Whenever $A = {\smallint _\Lambda } \oplus A(\lambda )\mu (d\lambda )$ is a decomposable operator on a direct integral $H = {\smallint _\Lambda } \oplus H(\lambda )\mu (d\lambda )$ of Hilbert spaces and f is a function analytic on a neighborhood of $\sigma (A)$, then we obtain that $f(A(\lambda ))$ is defined almost everywhere and $f(A)(\lambda ) = f(A(\lambda ))$ almost everywhere. This relationship is used to study operators A, on a separable Hilbert space, for which some analytic function A is a normal operator. Two main results are obtained. Let f be an analytic function on a neighborhood of the spectrum of an operator A. If $f''(z) \ne 0$ for all z in the spectrum of A and if $f(A)$ is a normal operator, then A is similar to a binormal operator. It is known that a binormal operator is unitarily equivalent to the direct sum of a normal and a two by two matrix of commuting normal operators. As above if $f(A)$ is normal and in addition, $f(z) - {\zeta _0}$ has at most two roots counted to their multiplicity for each ${\zeta _0}$ in the spectrum of N, then A is a binormal operator.References
- C. Apostol, On the roots of spectral operator-valued analytic functions, Rev. Roumaine Math. Pures Appl. 13 (1968), 587–589. MR 234302
- Horst Behncke, Structure of certain nonnormal operators. II, Indiana Univ. Math. J. 22 (1972/73), 301–308. MR 320788, DOI 10.1512/iumj.1972.22.22025
- Arlen Brown, The unitary equivalence of binormal operators, Amer. J. Math. 76 (1954), 414–434. MR 62355, DOI 10.2307/2372582
- T. R. Chow, The spectral radius of a direct integral of operators, Proc. Amer. Math. Soc. 26 (1970), 593–597. MR 283603, DOI 10.1090/S0002-9939-1970-0283603-8
- T. R. Chow, A spectral theory for direct integrals of operators, Math. Ann. 188 (1970), 285–303. MR 268701, DOI 10.1007/BF01431463
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). MR 0171173
- Nelson Dunford, A spectral theory for certain operators on a direct sum of Hilbert spaces, Math. Ann. 162 (1965/66), 294–330. MR 190772, DOI 10.1007/BF01369105
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers John Wiley & Sons, New York-London, 1963. With the assistance of William G. Bade and Robert G. Bartle. MR 0188745
- M. Finkelstein and A. Lebow, A note on $''nth$ roots of operators”, Proc. Amer. Math. Soc. 21 (1969), 250. MR 242003, DOI 10.1090/S0002-9939-1969-0242003-9
- S. R. Foguel, Algebraic functions of normal operators, Israel J. Math. 6 (1968), 199–201. MR 233227, DOI 10.1007/BF02760251
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- Svetozar Kurepa, On $n$-th roots of normal operators, Math. Z. 78 (1962), 285–292. MR 138000, DOI 10.1007/BF01195175
- Edgar R. Lorch, The theory of analytic functions in normed Abelian vector rings, Trans. Amer. Math. Soc. 54 (1943), 414–425. MR 9090, DOI 10.1090/S0002-9947-1943-0009090-0
- John von Neumann, On rings of operators. Reduction theory, Ann. of Math. (2) 50 (1949), 401–485. MR 29101, DOI 10.2307/1969463
- Heydar Radjavi and Peter Rosenthal, On roots of normal operators, J. Math. Anal. Appl. 34 (1971), 653–664. MR 278097, DOI 10.1016/0022-247X(71)90105-3
- J. T. Schwartz, $W^{\ast }$-algebras, Gordon and Breach Science Publishers, New York-London-Paris, 1967. MR 0232221
- J. G. Stampfli, Roots of scalar operators, Proc. Amer. Math. Soc. 13 (1962), 796–798. MR 140949, DOI 10.1090/S0002-9939-1962-0140949-7
Additional Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 176 (1973), 369-383
- MSC: Primary 47A60; Secondary 47B15
- DOI: https://doi.org/10.1090/S0002-9947-1973-0312301-4
- MathSciNet review: 0312301