Bibasic sequences and norming basic sequences
HTML articles powered by AMS MathViewer
- by William J. Davis, David W. Dean and Bor Luh Lin PDF
- Trans. Amer. Math. Soc. 176 (1973), 89-102 Request permission
Abstract:
It is shown that every infinite dimensional Banach space X contains a basic sequence $({x_n})$ having biorthogonal functionals $({f_n}) \subset {X^\ast }$ such that $({f_n})$ is also basic. If $[{f_n}]$ norms $[{x_n}]$ then $({f_n})$ is necessarily basic. If $[{f_n}]$ norms $[{x_n}]$ then $[{x_n}]$ norms $[{f_n}]$. In order that $[{f_n}]$ norms $[{x_n}]$ it is necessary and sufficient that the operators ${S_n}x = \Sigma _1^n{f_i}(x){x_i}$ be uniformly bounded. If $[{f_n}]$ norms $[{x_n}]$ then ${X^\ast }$ has a complemented subspace isomorphic to ${[{x_n}]^\ast }$. Examples are given to show that $({f_n})$ need not be basic and, if $({f_n})$ is basic, still $[{f_n}]$ need not norm $[{x_n}]$.References
- Mahlon M. Day, On the basis problem in normed spaces, Proc. Amer. Math. Soc. 13 (1962), 655–658. MR 137987, DOI 10.1090/S0002-9939-1962-0137987-7
- William J. Davis and Ivan Singer, Boundedly complete $M$-bases and complemented subspaces in Banach spaces, Trans. Amer. Math. Soc. 175 (1973), 187–194. MR 317011, DOI 10.1090/S0002-9947-1973-0317011-5
- David W. Dean, Ivan Singer, and Leonard Sternbach, On shrinking basic sequences in Banach spaces, Studia Math. 40 (1971), 23–33. MR 306876, DOI 10.4064/sm-40-1-23-33
- J. Dixmier, Sur un théorème de Banach, Duke Math. J. 15 (1948), 1057–1071 (French). MR 27440
- Aryeh Dvoretzky, Some results on convex bodies and Banach spaces, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960) Jerusalem Academic Press, Jerusalem; Pergamon, Oxford, 1961, pp. 123–160. MR 0139079
- Bernard R. Gelbaum, Notes on Banach spaces and bases, An. Acad. Brasil. Ci. 30 (1958), 29–36. MR 98974
- William B. Johnson, Markuschevich bases and duality theory, Trans. Amer. Math. Soc. 149 (1970), 171–177. MR 261312, DOI 10.1090/S0002-9947-1970-0261312-3
- W. B. Johnson and H. P. Rosenthal, On $\omega ^{\ast }$-basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972), 77–92. MR 310598, DOI 10.4064/sm-43-1-77-92
- M. Ĭ. Kadec′ and A. Pelčin′ski, Basic sequences, bi-orthogonal systems and norming sets in Banach and Fréchet spaces, Studia Math. 25 (1965), 297–323 (Russian). MR 181886
- S. Karlin, Bases in Banach spaces, Duke Math. J. 15 (1948), 971–985. MR 29103
- Bor-luh Lin, On psuedo-reflexive Banach spaces, Math. Ann. 159 (1965), 197–202. MR 178337, DOI 10.1007/BF01360290
- V. D. Mil′man, Geometric theory of Banach spaces. I. Theory of basic and minimal systems, Uspehi Mat. Nauk 25 (1970), no. 3 (153), 113–174 (Russian). MR 0280985
- F. J. Murray, Quasi-complements and closed projections in reflexive Banach spaces, Trans. Amer. Math. Soc. 58 (1945), 77–95. MR 13226, DOI 10.1090/S0002-9947-1945-0013226-7
- A. Pełczyński, A note on the paper of I. Singer “Basic sequences and reflexivity of Banach spaces”, Studia Math. 21 (1961/62), 371–374. MR 146636, DOI 10.4064/sm-21-3-370-374
- A. Pełczyński, A proof of Eberlein-Šmulian theorem by an application of basic sequences, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964), 543–548. MR 172091
- A. Pełczyński and I. Singer, On non-equivalent bases and conditional bases in Banach spaces, Studia Math. 25 (1964/65), 5–25. MR 179583, DOI 10.4064/sm-25-1-5-25
- Ju. I. Petunin, Conjugate Banach spaces containing subspaces of characteristic zero, Dokl. Akad. Nauk SSSR 154 (1964), 527–529 (Russian). MR 0159208
- I. Singer, Basic sequences and reflexivity of Banach spaces, Studia Math. 21 (1961/62), 351–369. MR 146635, DOI 10.4064/sm-21-3-351-369
- Ivan Singer, On bases in quasi-reflexive Banach spaces, Rev. Math. Pures Appl. 8 (1963), 309–311. MR 178341
- Ivan Singer, Bases and quasi-reflexivity of Banach spaces, Math. Ann. 153 (1964), 199–209. MR 162121, DOI 10.1007/BF01360316 —, Bases in Banach spaces. Vol. 1, Springer-Verlag, Berlin and New York, 1970.
Additional Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 176 (1973), 89-102
- MSC: Primary 46B15
- DOI: https://doi.org/10.1090/S0002-9947-1973-0313763-9
- MathSciNet review: 0313763