Codominant dimension of rings and modules
HTML articles powered by AMS MathViewer
- by Gary L. Eerkes PDF
- Trans. Amer. Math. Soc. 176 (1973), 125-139 Request permission
Abstract:
Expanding Nakayama’s original concept of dominant dimension, Tachikawa, Müller and Kato have obtained a number of results pertaining to finite dimensional algebras and more generally, rings and their modules. The purpose of this paper is to introduce and examine a categorically dual notion, namely, codominant dimension. Special attention is given to the question of the relation between the codominant and dominant dimensions of a ring. In particular, we show that the two dimensions are equivalent for artinian rings. This follows from our main result that for a left perfect ring R the dominant dimension of each projective left R-module is greater than or equal to n if and only if the codominant dimension of each injective left R-module is greater than or equal to n. Finally, for computations, we consider generalized uniserial rings and show that the codominant dimension, or equivalently, dominant dimension, is a strict function of the ring’s Kupisch sequence.References
- Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 157984, DOI 10.1090/S0002-9947-1960-0157984-8
- Carl Faith and Elbert A. Walker, Direct-sum representations of injective modules, J. Algebra 5 (1967), 203–221. MR 207760, DOI 10.1016/0021-8693(67)90035-X
- Kent R. Fuller, Generalized uniserial rings and their Kupisch series, Math. Z. 106 (1968), 248–260. MR 232795, DOI 10.1007/BF01110273
- Kent R. Fuller, On indecomposable injectives over artinian rings, Pacific J. Math. 29 (1969), 115–135. MR 246917
- Manabu Harada, $\textrm {QF}-3$ and semi-primary $\textrm {PP}$-rings. I, II, Osaka J. Math. 2 (1965), 357–368; ibid. 3 (1965), 21–27. MR 206049
- J. P. Jans, Projective injective modules, Pacific J. Math. 9 (1959), 1103–1108. MR 112904
- Toyonori Kato, Dominant modules, J. Algebra 14 (1970), 341–349. MR 257138, DOI 10.1016/0021-8693(70)90110-9
- Toyonori Kato, Rings of dominant dimension $\leq 1$, Proc. Japan Acad. 44 (1968), 579–584. MR 236227
- Toyonori Kato, Rings of $U$-dominant dimension $\geq 1$, Tohoku Math. J. (2) 21 (1969), 321–327. MR 248169, DOI 10.2748/tmj/1178243000
- Herbert Kupisch, Beiträge zur Theorie nichthalbeinfacher Ringe mit Minimalbedingung, J. Reine Angew. Math. 201 (1959), 100–112 (German). MR 104707, DOI 10.1515/crll.1959.201.100
- Eben Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511–528. MR 99360
- Bruno J. Müller, On algebras of dominant dimension one, Nagoya Math. J. 31 (1968), 173–183. MR 219566
- Bruno J. Müller, The classification of algebras by dominant dimension, Canadian J. Math. 20 (1968), 398–409. MR 224656, DOI 10.4153/CJM-1968-037-9
- Bruno J. Müller, Dominant dimension of semi-primary rings, J. Reine Angew. Math. 232 (1968), 173–179. MR 233854, DOI 10.1515/crll.1968.232.173
- Ichiro Murase, On the structure of generalized uniserial rings. I, Sci. Papers College Gen. Ed. Univ. Tokyo 13 (1963), 1–22. MR 156875
- Ichiro Murase, On the structure of generalized uniserial rings. II, Sci. Papers College Gen. Ed. Univ. Tokyo 13 (1963), 131–158. MR 161882
- Ichiro Murase, On the structure of generalized uniserial rings. III, Sci. Papers College Gen. Ed. Univ. Tokyo 14 (1964), 11–25. MR 178019
- Tadasi Nakayama, On algebras with complete homology, Abh. Math. Sem. Univ. Hamburg 22 (1958), 300–307. MR 104718, DOI 10.1007/BF02941960
- B. L. Osofsky, A generalization of quasi-Frobenius rings, J. Algebra 4 (1966), 373–387. MR 204463, DOI 10.1016/0021-8693(66)90028-7
- Hiroyuki Tachikawa, A characterization of $\textrm {QF}-3$ algebras, Proc. Amer. Math. Soc. 13 (1962), 701–703. MR 147512, DOI 10.1090/S0002-9939-1962-0147512-2
- Hiroyuki Tachikawa, On dominant dimensions of $\textrm {QF}$-3 algebras, Trans. Amer. Math. Soc. 112 (1964), 249–266. MR 161888, DOI 10.1090/S0002-9947-1964-0161888-8
Additional Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 176 (1973), 125-139
- MSC: Primary 16A60
- DOI: https://doi.org/10.1090/S0002-9947-1973-0314906-3
- MathSciNet review: 0314906