Banach spaces whose duals contain $l_{1}(\Gamma )$ with applications to the study of dual $L_{1}(\mu )$ spaces
HTML articles powered by AMS MathViewer
- by C. Stegall PDF
- Trans. Amer. Math. Soc. 176 (1973), 463-477 Request permission
Abstract:
THEOREM I. If E is a separable Banach space such that $E’$ has a complemented subspace isomorphic to ${l_1}({\mathbf {\Gamma }})$ with ${\mathbf {\Gamma }}$ uncountable then $E’$ contains a complemented, $\sigma (E’,E)$ closed subspace isomorphic to $M({\mathbf {\Delta }})$, the Radon measures on the Cantor set. THEOREM II. If E is a separable Banach space such that $E’$ has a subspace isomorphic to ${l_1}({\mathbf {\Gamma }})$ with ${\mathbf {\Gamma }}$ uncountable, then E contains a subspace isomorphic to ${l_1}$, THEOREM III. Let E be a Banach space. The following are equivalent: (i) $E’$ is isomorphic to ${l_1}({\mathbf {\Gamma }})$; (ii) every absolutely summing operator on E is nuclear; (iii) every compact, absolutely summing operator on E is nuclear; (iv) if X is a separable subspace of E, then there exists a subspace Y such that $X \subseteq Y \subseteq E$ and $Y’$ is isomorphic to ${l_1}$. THEOREM IV. If E is a ${\mathcal {L}_\infty }$ space then (i) $E’$ is isomorphic to ${l_1}({\mathbf {\Gamma }})$ for some set ${\mathbf {\Gamma }}$ or (ii) $E’$ contains a complemented subspace isomorphic to $M({\mathbf {\Delta }})$. COROLLARY. If E is a separable ${\mathcal {L}_\infty }$ space, then $E’$ is (i) finite dimensional, or (ii) isomorphic to ${l_1}$, or (iii) isomorphic to $M({\mathbf {\Delta }})$. COROLLARY. If ${L_1}(\mu )$ is isomorphic to the conjugate of a separable Banach space, then ${L_1}(\mu )$ is isomorphic to ${l_1}$ or $M({\mathbf {\Delta }})$.References
- D. Amir, Projections onto continuous function spaces, Proc. Amer. Math. Soc. 15 (1964), 396–402. MR 165350, DOI 10.1090/S0002-9939-1964-0165350-3 J. Dieudonńe, Sur les espaces ${L^1}$, Arch. Math. 10 (1969), 151-152. I. M. Gel’fand, Abstrakte Funktionen und lineare Operatoren, Mat. Sb. 4 (46) (1938), 235-286.
- Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR 75539
- W. B. Johnson and H. P. Rosenthal, On $\omega ^{\ast }$-basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972), 77–92. MR 310598, DOI 10.4064/sm-43-1-77-92
- W. B. Johnson, H. P. Rosenthal, and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488–506. MR 280983, DOI 10.1007/BF02771464
- Gottfried Köthe, Hebbare lokalkonvexe Räume, Math. Ann. 165 (1966), 181–195 (German). MR 196464, DOI 10.1007/BF01343797
- D. R. Lewis and C. Stegall, Banach spaces whose duals are isomorphic to $l_{1}(\Gamma )$, J. Functional Analysis 12 (1973), 177–187. MR 0342987, DOI 10.1016/0022-1236(73)90022-0
- A. J. Lazar and J. Lindenstrauss, Banach spaces whose duals are $L_{1}$ spaces and their representing matrices, Acta Math. 126 (1971), 165–193. MR 291771, DOI 10.1007/BF02392030
- Joram Lindenstrauss, On James’s paper “Separable conjugate spaces”, Israel J. Math. 9 (1971), 279–284. MR 279567, DOI 10.1007/BF02771677
- J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in $L_{p}$-spaces and their applications, Studia Math. 29 (1968), 275–326. MR 231188, DOI 10.4064/sm-29-3-275-326
- J. Lindenstrauss and A. Pełczyński, Contributions to the theory of the classical Banach spaces, J. Functional Analysis 8 (1971), 225–249. MR 0291772, DOI 10.1016/0022-1236(71)90011-5
- J. Lindenstrauss and H. P. Rosenthal, The ${\cal L}_{p}$ spaces, Israel J. Math. 7 (1969), 325–349. MR 270119, DOI 10.1007/BF02788865
- A. A. Miljutin, Isomorphism of the spaces of continuous functions over compact sets of the cardinality of the continuum, Teor. Funkciĭ Funkcional. Anal. i Priložen. Vyp. 2 (1966), 150–156. (1 foldout) (Russian). MR 0206695
- A. Pełczyński, Projections in certain Banach spaces, Studia Math. 19 (1960), 209–228. MR 126145, DOI 10.4064/sm-19-2-209-228
- A. Pełczyński, On Banach spaces containing $L_{1}(\mu )$, Studia Math. 30 (1968), 231–246. MR 232195, DOI 10.4064/sm-30-2-231-246
- Haskell P. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970), 13–36. MR 270122, DOI 10.4064/sm-37-1-13-36
- Haskell P. Rosenthal, On injective Banach spaces and the spaces $L^{\infty }(\mu )$ for finite measure $\mu$, Acta Math. 124 (1970), 205–248. MR 257721, DOI 10.1007/BF02394572
- C. P. Stegall and J. R. Retherford, Fully nuclear and completely nuclear operators with applications to ${\cal L}_{1}-$ and ${\cal L}_{\infty }$-spaces, Trans. Amer. Math. Soc. 163 (1972), 457–492. MR 415277, DOI 10.1090/S0002-9947-1972-0415277-3
- L. Tzafriri, Remarks on contractive projections in $L_{p}$-spaces, Israel J. Math. 7 (1969), 9–15. MR 248514, DOI 10.1007/BF02771741
Additional Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 176 (1973), 463-477
- MSC: Primary 46B05; Secondary 46E30
- DOI: https://doi.org/10.1090/S0002-9947-1973-0315404-3
- MathSciNet review: 0315404