Boundary values of solutions of elliptic equations satisfying $H^{p}$ conditions
HTML articles powered by AMS MathViewer
- by Robert S. Strichartz PDF
- Trans. Amer. Math. Soc. 176 (1973), 445-462 Request permission
Abstract:
Let A be an elliptic linear partial differential operator with ${C^\infty }$ coefficients on a manifold ${\mathbf {\Omega }}$ with boundary ${\mathbf {\Gamma }}$. We study solutions of $Au = \sigma$ which satisfy the ${H^p}$ condition that ${\sup _{0 < t < 1}}{\left \| {u( \cdot ,t)} \right \|_p} < \infty$, where we have chosen coordinates in a neighborhood of ${\mathbf {\Gamma }}$ of the form ${\mathbf {\Gamma }} \times [0,1]$ with ${\mathbf {\Gamma }}$ identified with $t = 0$. If A has a well-posed Dirichlet problem such solutions may be characterized in terms of the Dirichlet data $u( \cdot ,0) = {f_0},{(\partial /\partial t)^j}u( \cdot ,0) = {f_j},j = 1, \cdots ,m - 1$ as follows: ${f_0} \in {L^p}$ (or $\mathfrak {M}$ if $p = 1$) and ${f_j} \in {\mathbf {\Lambda }}( - j;p,\infty ),j = 1, \cdots ,m$ . Here ${\mathbf {\Lambda }}$ denotes the Besov spaces in Taibleson’s notation. If $m = 1$ then u has nontangential limits almost everywhere.References
- S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623–727. MR 125307, DOI 10.1002/cpa.3160120405
- A. Benedek, A.-P. Calderón, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 356–365. MR 133653, DOI 10.1073/pnas.48.3.356 A. P. Calderón, A priori estimates for singular integral operators, Pseudo-Differential Operators (C.I.M.E., Stresa, 1968), Edizioni Cremonese, Rome, 1969, pp. 85-141. MR 41 #872.
- J. R. Hattemer, Boundary behavior of temperatures. I, Studia Math. 25 (1964/65), 111–155. MR 181838, DOI 10.4064/sm-25-1-111-155
- Richard A. Hunt and Richard L. Wheeden, On the boundary values of harmonic functions, Trans. Amer. Math. Soc. 132 (1968), 307–322. MR 226044, DOI 10.1090/S0002-9947-1968-0226044-7
- Jaak Peetre, Sur les espaces de Besov, C. R. Acad. Sci. Paris Sér. A-B 264 (1967), A281–A283 (French). MR 218887
- John C. Polking, Boundary value problems for parabolic systems of partial differential equations, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 243–274. MR 0378000
- R. T. Seeley, Singular integrals and boundary value problems, Amer. J. Math. 88 (1966), 781–809. MR 209915, DOI 10.2307/2373078
- R. Seeley, Topics in pseudo-differential operators, Pseudo-Diff. Operators (C.I.M.E., Stresa, 1968) Edizioni Cremonese, Rome, 1969, pp. 167–305. MR 0259335
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- E. M. Stein, The characterization of functions arising as potentials. II, Bull. Amer. Math. Soc. 68 (1962), 577–582. MR 142980, DOI 10.1090/S0002-9904-1962-10856-8 M. H. Taibleson, On the theory of Lipschitz spaces of distrubutions on Euclidean n-space. I, II, J. Math. Mech. 13 (1964), 407-479; ibid. 14 (1965), 821-839. MR 29 #462; MR 31 #5087.
- Kjell-Ove Widman, On the boundary behavior of solutions to a class of elliptic partial differential equations, Ark. Mat. 6 (1967), 485–533 (1967). MR 219875, DOI 10.1007/BF02591926
- A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR 0236587
Additional Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 176 (1973), 445-462
- MSC: Primary 35J67
- DOI: https://doi.org/10.1090/S0002-9947-1973-0320525-5
- MathSciNet review: 0320525