On the determination of irreducible modules by restriction to a subalgebra
HTML articles powered by AMS MathViewer
- by J. Lepowsky and G. W. McCollum PDF
- Trans. Amer. Math. Soc. 176 (1973), 45-57 Request permission
Abstract:
Let $\mathcal {B}$ be an algebra over a field, $\mathcal {A}$ a subalgebra of $\mathcal {B}$, and $\alpha$ an equivalence class of finite dimensional irreducible $\mathcal {A}$-modules. Under certain restrictions, bijections are established between the set of equivalence classes of irreducible $\mathcal {B}$-modules containing a nonzero $\alpha$-primary $\mathcal {A}$-submodule, and the sets of equivalence classes of all irreducible modules of certain canonically constructed algebras. Related results had been obtained by Harish-Chandra and R. Godement in special cases. The general methods and results appear to be useful in the representation theory of semisimple Lie groups.References
-
N. Bourbaki, Éléments de mathématique. XXVI. Groupes et algébres de Lie. Chap. 1: Algébres de Lie, Actualités Sci. Indust., no. 1285, Hermann, Paris, 1960. MR 24 #A2641.
- Roger Godement, A theory of spherical functions. I, Trans. Amer. Math. Soc. 73 (1952), 496–556. MR 52444, DOI 10.1090/S0002-9947-1952-0052444-2
- Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185–243. MR 56610, DOI 10.1090/S0002-9947-1953-0056610-2
- Harish-Chandra, Representations of semisimple Lie groups. II, Trans. Amer. Math. Soc. 76 (1954), 26–65. MR 58604, DOI 10.1090/S0002-9947-1954-0058604-0
- Nathan Jacobson, Structure of rings, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, 190 Hope Street, Providence, R.I., 1956. MR 0081264
- Bertram Kostant, On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc. 75 (1969), 627–642. MR 245725, DOI 10.1090/S0002-9904-1969-12235-4
- J. Lepowsky, Algebraic results on representations of semisimple Lie groups, Trans. Amer. Math. Soc. 176 (1973), 1–44. MR 346093, DOI 10.1090/S0002-9947-1973-0346093-X
Additional Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 176 (1973), 45-57
- MSC: Primary 17B10
- DOI: https://doi.org/10.1090/S0002-9947-1973-0323846-5
- MathSciNet review: 0323846