Groups whose homomorphic images have a transitive normality relation
HTML articles powered by AMS MathViewer
- by Derek J. S. Robinson PDF
- Trans. Amer. Math. Soc. 176 (1973), 181-213 Request permission
Abstract:
A group G is a T-group if $H \triangleleft K \triangleleft G$ implies that $H \triangleleft G$, i.e. normality is transitive. A just non-T-group (JNT-group) is a group which is not a T-group but all of whose proper homomorphic images are T-groups. In this paper all soluble JNT-groups are classified; it turns out that these fall into nine distinct classes. In addition all soluble $JN\bar T$-groups and all finite $JN\bar T$-groups are determined; here a group G is a $\bar T$-group if $H \triangleleft K \triangleleft L \leq G$ implies that $H \triangleleft L$. It is also shown that a finitely generated soluble group which is not a T-group has a finite homomorphic image which is not a T-group.References
- Reinhold Baer, Irreducible groups of automorphisms of abelian groups, Pacific J. Math. 14 (1964), 385–406. MR 165019
- Christopher D. H. Cooper, Power automorphisms of a group, Math. Z. 107 (1968), 335–356. MR 236253, DOI 10.1007/BF01110066
- R. S. Dark, On subnormal embedding theorems for groups, J. London Math. Soc. 43 (1968), 387–390. MR 225855, DOI 10.1112/jlms/s1-43.1.387
- John D. Dixon, Complements of normal subgroups in infinite groups, Proc. London Math. Soc. (3) 17 (1967), 431–446. MR 210777, DOI 10.1112/plms/s3-17.3.431 H. Fitting, Beiträge zur Theorie der Gruppen endlichen Ordnung, Jber. Deutsch. Math.-Verein. 48 (1938), 77-141.
- L. Fuchs, Abelian groups, International Series of Monographs on Pure and Applied Mathematics, Pergamon Press, New York-Oxford-London-Paris, 1960. MR 0111783
- Wolfgang Gaschütz, Gruppen, in denen das Normalteilersein transitiv ist, J. Reine Angew. Math. 198 (1957), 87–92 (German). MR 91277, DOI 10.1515/crll.1957.198.87
- P. Hall, On the finiteness of certain soluble groups, Proc. London Math. Soc. (3) 9 (1959), 595–622. MR 110750, DOI 10.1112/plms/s3-9.4.595
- P. Hall, Wreath powers and characteristically simple groups, Proc. Cambridge Philos. Soc. 58 (1962), 170–184. MR 139649, DOI 10.1017/s0305004100036379
- P. Hall and Graham Higman, On the $p$-length of $p$-soluble groups and reduction theorems for Burnside’s problem, Proc. London Math. Soc. (3) 6 (1956), 1–42. MR 72872, DOI 10.1112/plms/s3-6.1.1
- Helmut Hasse, Zahlentheorie, Akademie-Verlag, Berlin, 1949 (German). MR 0034400
- Bertram Huppert, Normalteiler und maximale Untergruppen endlicher Gruppen, Math. Z. 60 (1954), 409–434 (German). MR 64771, DOI 10.1007/BF01187387
- Irving Kaplansky, Infinite abelian groups, University of Michigan Press, Ann Arbor, 1954. MR 0065561
- A. G. Kurosh, The theory of groups, Chelsea Publishing Co., New York, 1960. Translated from the Russian and edited by K. A. Hirsch. 2nd English ed. 2 volumes. MR 0109842
- B. H. Neumann, Ascending derived series, Compositio Math. 13 (1956), 47–64. MR 89196
- M. F. Newman, On a class of metabelian groups, Proc. London Math. Soc. (3) 10 (1960), 354–364. MR 117293, DOI 10.1112/plms/s3-10.1.354
- M. F. Newman, On a class of nilpotent groups, Proc. London Math. Soc. (3) 10 (1960), 365–375. MR 120278, DOI 10.1112/plms/s3-10.1.365
- Derek J. S. Robinson, Groups in which normality is a transitive relation, Proc. Cambridge Philos. Soc. 60 (1964), 21–38. MR 159885, DOI 10.1017/s0305004100037403
- Derek J. S. Robinson, A note on finite groups in which normality is transitive, Proc. Amer. Math. Soc. 19 (1968), 933–937. MR 230808, DOI 10.1090/S0002-9939-1968-0230808-9
- Derek J. S. Robinson, Groups which are minimal with respect to normality being intransitive, Pacific J. Math. 31 (1969), 777–785. MR 258943
- Luigi Antonio Rosati, Siu gruppi a fattoriali abeliani, Matematiche (Catania) 13 (1958), 138–147 (Italian). MR 124397
- Helmut Wielandt, Über den Normalisator der subnormalen Untergruppen, Math. Z. 69 (1958), 463–465 (German). MR 102550, DOI 10.1007/BF01187422
Additional Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 176 (1973), 181-213
- MSC: Primary 20E15
- DOI: https://doi.org/10.1090/S0002-9947-1973-0323907-0
- MathSciNet review: 0323907